K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

tự kẻ hình nha

a) vì AB=AC=> tam giác ABC cân A=> ABC=ACB=180-90/2=45 độ

xét tam giác ABM và tam giác ACM có

AB=AC(gt)

ABC=ACB(cmt)

BM=CM(gt)

=> tam giác ABM= tam giác ACM(cgc)

b) phải là AM//CK nha

từ tam giác ABM= tam giác ACM=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ (kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC, CK vuông góc với BC

=> AM//CK

c) vì tam giác BCK vuông tại C=> CBK+BKC=90 độ=> BKC=90-45=45 độ

20 tháng 11 2016

a, xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM     do M là trung điểm của BC

AM là cạnh chung 

=> tam giác ABM =tam giác ACM    c.c.c

=> góc B = góc C   do là 2 góc tương ứng

20 tháng 11 2016

vì tam giác ABM =tam giác ACM nên   góc BMA= góc AMC (2 góc tương ứng

mà ^BMA + ^AMC =180 độ  do là 2 góc kề bù

mà BMA = AMC nên BMA =AMC =180 độ :2 =90 độ

=> AM vuông góc với BC

15 tháng 12 2023

Bài 2

loading...

Ta có:

∠N + ∠DMN + ∠MDN = 180⁰ (tổng các góc trong ∆MDN)

⇒ ∠NMD = 180⁰ - (∠N + ∠MDN) (1)

∠P + ∠MDP + ∠PMD = 180⁰ (tổng các góc trong ∆MDP)

⇒ ∠PMD = 180⁰ - (∠MDP + ∠P) (2)

Do MD là tia phân giác của ∠NMP (gt)

⇒ ∠NMD = ∠PMD (3)

Từ (1), (2) và (3) ⇒ ∠DMP + ∠P = ∠N + ∠DMN

⇒ ∠DMP - ∠DMN = ∠N - ∠P

15 tháng 12 2023

Bài 1

loading... a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆ABM và ∆ACM có:

AM là cạnh chung

AB = AC (gt)

MB = MC (cmt)

⇒ ∆ABM = ∆ACM (c-c-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

Mà BD ⊥ BC (gt)

⇒ BD // AM

c) Do ∆ABM = ∆ACM (cmt)

⇒ ∠BAM = ∠CAM (hai góc tương ứng)

Do BD // AM (cmt)

⇒ ∠ADB = ∠CAM (đồng vị)

∠ABD = ∠BAM (so le trong)

Mà ∠BAM = ∠CAM (cmt)

⇒ ∠ABD = ∠ADB

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên Tam giác ABM=tam giác ACM (c.g.c) Vì tam giác ABC cân tại A và AM là tia phân giác của góc BAC nên AM cũng là đường cao của tam giác ABC kẻ từ đỉnh A đến đường thẳng chứa cạnh BC. => AM _|_ BC. b) Ta có: Tam giác ABM = Tam giác ACM (cmt) =>BM=CM(2cạnh tương ứng) =>AM là đường trung tuyến của BC. Ta có: AM là đường trung tuyến của BC (cmt) BQ là đường trung tuyến của AC(gt) BQ cắt AM tại G (gt) => G là giao điểm của 3 đường trung tuyến trong tam giác ABC. =>G là trọng tâm của tam giác ABC. (đpcm) c) Ta có: BM=CM (cmt) => BM=CM=BC/2=18/2=9 (cm) Xét tam giác ABM vuông tại M (do AM_|_BC(cmt)) Áp dụng định lí Pitago ta có: AM^2+BM^2=AB^2 => AM^2=AB^2-BM^2 => AM^2=15^2-9^2 => AM^2=225-81 => AM^2= 144 Do AM>0 nên AM=√144=12cm Mà AG=2/3AM(tính chất 3 đường trung tuyến của tam giác) =>AG=2/3.12=8cm d) (Làm như bạn kia) CHÚC BẠN HỌC TỐT!!!
27 tháng 7 2021

Bài làm hoàn chỉnh đây nhé bn

undefined

27 tháng 7 2021

Xem lại đề câu c nhé bn

undefined