Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔACM và ΔBMN có
AM=BM(M là trung điểm của AB)
\(\widehat{AMC}=\widehat{BMN}\)(hai góc đối đỉnh)
CM=MN(gt)
Do đó: ΔAMC=ΔBMN(c-g-c)
b) Ta có: ΔAMC=ΔBMN(cmt)
nên \(\widehat{CAM}=\widehat{NBM}\)(hai góc tương ứng)
mà \(\widehat{CAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB)
nên \(\widehat{NBM}=90^0\)
⇒\(\widehat{NBA}=90^0\)
hay NB⊥AB(đpcm)
c) Xét ΔAMN và ΔBMC có
MA=MB(M là trung điểm của AB)
\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)
MN=MC(gt)
Do đó: ΔAMN=ΔBMC(c-g-c)
⇒AN=BC(hai cạnh tương ứng) và \(\widehat{NAM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{NAM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AB=NC và ΔCAN vuông tại C
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
a) Xét tam giác MAB và tam giác MCN có
MB =MC ( M là tđ BC)
AM =AN (gt)
AMB = CMD ( 2 góc đối đỉnh )
=> 2 tam giác = nhau (c-g-c)
=> AB =NC (2 cạnh tương ứng)
=> góc BAN = góc ANC (2 góc tương ứng)
mà 2 góc ở vị trí so le trong => AB // NC
=> A + C = 180 ( 2 góc trong cùng phía bù nhau)
=> 90 + c = 180 => góc C=90
xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C
b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc)
c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN
mà BM = AM (cmt ) => BM=AM=MN=1/2AN
=> tam giác ABN vuông tại B => AB vuông góc với BN
mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)
mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)
ta lại có MI cũng vuông góc với AC (gt)
=> M,K,I thẳng hàng (tiên đề ơ clits)
A B C M N E 1 2
a) Xét t/giác ABC vuông tại A có góc B = 600 => góc C = 900 - 600 = 300
Ta có: \(\widehat{B1}=\widehat{B2}=\widehat{\frac{B}{2}}=\frac{60^0}{2}=30^0\)
=> \(\widehat{C}=\widehat{B2}\) = >t/giác BEC cân tại E => EB = EC
b) Trên tia đối của tia AB lấy điểm M sao cho AM = AB
Xét t/giác ABC và t/giác AMC
có: AB = AM
\(\widehat{BAC}=\widehat{MAC}=90^0\) (gt)
AC : chung
=> t/giác ABC = t/giác AMC (c.g.c)
=> BC = CM (2 cạnh t/ứng)
=> t/giác ACM cân tại C có \(\widehat{B}=60^0\)
=> t/giác ACM đều
=> BC = CM = BM
Mà BM = AB + AM = 2AB (AB = AM)
=> BC = 2AB => AB = 1/2BC
c) Xét t/giác ABC vuông tại A có AN là đường trung tuyến
=> AM = BN = NC = 1/2BC
=> t/giác ANC cân tại N
=> AN = NC
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
Hình như là AN = BC mới đúng á, mình làm câu a trước nha
Xét tam giác ACM và tam giác BNM có:
CM = MN
AM = BM (do M là trung điểm của AB)
góc AMC = góc BMN (2 góc đối đỉnh)
Do đó: tam giác ACM = tam giác BNM (c.g.c)
=> \(\widehat{CAM}=\widehat{NBM}=90^o\left(\widehat{BAC}=90^o\right)\) (2 góc tương ứng)
\(\Rightarrow\widehat{ABN}=90^o\)
Hay BN \(\perp\) AB