Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Do xy không cắt đoạn BC
=> xy //BC
=> ECBD là hình chữ nhật'
Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)
=> \(\Delta ABD=\Delta ACE\)
=> AE=AD
=> Tam giác ADE cân tại E
\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)
=> EC=EA
Tương tự: AD=BD
=> DE=AE+AD=EC+BD
a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :
AB = AC (gt)
^AEC = ^ADB = 900
CE = BD (gt)
=> \(\Delta\)ABD = \(\Delta\)ACE
b, Ta có xy không cắt BC
=> xy//BC
=> ^DBA= ^DAB (vị trí đồng vị)
=> \(\Delta\) BDA cân tại D
=> DA=DB
\(\Delta\)EAC cân tại E (cmt)
=> EA=EC
=> DE = AD + AC = BD + CE
em cứ xem qua phần hình chư nhật của lớp 8 nếu k hiểu anh xẽ giải thích sau
gợi ý:
+ xét hai tam giác vuông cần chứng minh có hai cạnh huyền bằng nhau sau dó xét góc:
do xy không cắt BC nên xy//BC=> góc B=góc C=90dộ mà ABC là tam giác vuông cân nên góc B Và góc C trong tam giác bằng nhau vậy: góc ABD = ACE
vạy hai tam giavs bằng nhau
câu b anh nghĩ em đọc toán 8 mới hiểu duocj cách giải của anh nên em có gì hỏi sau nhé :)
Do xy không cắt BC => xy // BC => khoảng cách từ B và C đến xy bằng nhau
hay BD = CE
Xét 2 tgiac vuông: tgiac ABD và tgiac ACE có:
BD = CE
AB = AC
suy ra: tgiac ABD = tgiac ACE (ch_cgv)
Tgiac ABC vuông cân tại A
=> góc ABC = góc ACB = 450
DE // BC
=> góc DAB = góc ABC = 450
mà tgiac DBA vuông tại D => góc DBA = 450
suy ra: tgiac DBA vuông cân tại D
=> DB = DA
C/M tương tự: AE = EC
Ta có" DE = DA + AE = BD + CE (đpcm)