Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
DO đo: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
DO đó: ΔAEF\(\sim\)ΔABC
c: Xét ΔMFB và ΔMCE có
góc MFB=góc MCE
góc FMB chung
Do đó:ΔMFB\(\sim\)ΔMCE
Suy ra: MF/MC=MB/ME
hay \(MF\cdot ME=MB\cdot MC\)
A D B C E F H
a.
Xét tam giác AEB và tam giác AFC có:
góc EAB chung
góc AEB = AFC = 90o
Do đó: tam giác AEB ~ AFC (g.g)
=> \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\Rightarrow AF.AB=AE.AC\)
( AF/FB ).(BD/DC).(CE/EA)= AF/AE. BD/FB . CE/DC
sau đó dựa vào các tam giác AEB, BFD,DCE cùng đồng dạng với tam giác ABC
A B C D E
\(\Delta ACE\)vuông tại A có \(\widehat{A}=60^o\)nên \(\widehat{ACE}=30^o\)
\(\Rightarrow\frac{AE}{AC}=\frac{1}{2}\)
Tương tự : \(\frac{AD}{AB}=\frac{1}{2}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
chứng minh : \(\Delta ADE\approx\Delta ABC\)( c.g.c )
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{1}{4}S_{ABC}\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC