Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).
A B C D E
CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).
Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\), \(ABE\) và \(DBC\).
Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).
Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)
Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)
A B C O E F S T I Q K D N J L P M G R
a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI
Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC
= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).
+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.
Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR
=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)
=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp
=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).
b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM
Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M
Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K
Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)
Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng
Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L
=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).
c) Gọi P là trực tâm của \(\Delta\)AJQ
Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI
Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)
Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp
^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900
=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).
d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC
Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]
Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900
Ta xét thứ tự các điểm trên cạnh AC:
+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)
=> ^IES = ^IFT < 900 => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK
Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)
+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800
=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\) (**)
Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).
A B C D E K H N M 2 1 2 1 1 1 F O
Xét \(\Delta ABK\)và \(\Delta C\text{D}K\)có:
\(\widehat{A_1}=\widehat{C_2}\)( 2 góc nội tiếp cùng chắn cung BD )
\(\widehat{AKB}=\widehat{CK\text{D}}\)( đối đỉnh )
\(\Rightarrow\Delta ABK~\Delta C\text{D}K\left(g-g\right)\)
\(\Rightarrow\frac{KA}{KB}=\frac{KC}{K\text{D}}\Rightarrow KA.K\text{D}=KB.KC\)
b) Kéo dài CH và BH cắt AB và AC lần lượt tại N và M
Xét \(\Delta HC\text{D}\) có:
CK vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\Delta HC\text{D}\)cân tại C
\(\Rightarrow\)CK là đường phân giác của \(\widehat{HC\text{D}}\Rightarrow\widehat{C_1}=\widehat{C_2}\)
Xét \(\Delta AMH\) và \(\Delta CKH\)có:
\(\widehat{AHM}=\widehat{CHK}\)( đối đỉnh )
\(\widehat{A_1}=\widehat{C_1}\)( cùng bằng \(\widehat{C_2}\))
\(\Rightarrow\Delta AMH~\Delta CKH\left(g-g\right)\)
\(\Rightarrow\widehat{AMH}=\widehat{CKH}=90^0\)
Hay \(CM\perp AB\)
Xét \(\Delta ABC\)có:
2 đường cao cắt nhau tại H
\(\Rightarrow\)H là trực tâm của tam giác ABC
c) Ta có: DE // BC Mà \(A\text{D}\perp BC\Rightarrow DE\perp A\text{D}\Rightarrow\widehat{FDE}=90^0\)
Xét \(\Delta AFB\)Và \(\Delta\text{E}FD\)có:
\(\widehat{F_1}=\widehat{F_2}\)( đối đỉnh )
\(\widehat{A_1}=\widehat{FED}\)( góc nội tiếp cùng chắn cung BD )
\(\Rightarrow\Delta\text{A}FB~\Delta\text{E}FD\left(g-g\right)\)
\(\Rightarrow\widehat{ABF}=\widehat{E\text{D}F}=90^0\)
Xét tam giác ABE nội tiếp đường tròn ( O, R )
có: \(\widehat{ABE}=90^0\)\(\Rightarrow\)AE là đường kính của ( O, R )
\(\Rightarrow\)A , O , E thẳng hàng
N D B A' A O C
a) Vẽ OM \(\perp\)BC ( M \(\in\)BC )
OM cắt DE tại N
DE// BC ( gt ) có ON \(\perp\)DE ,tứ giác BCDE là hình thang
OM \(\perp\)BC => M là trung điểm của BC
ON\(\perp\)DE => N là trung điểm của DE
MN là trục đối xứng của hình thang cân=> đpcm
d) 1)BC //DE ( dt) , AD \(\perp\)BC ( gt )
=> AD\(\perp\)DE
góc ADE = 90 độ => AE là đường kính của đường tròn ( O)
=> A,O,E thẳng hàng ( đpcm )
2) BE = CD ( BECD là hình thang cân )
AE là đường kính nên góc ABE = 90 độ
Tam giác ABE vuông tại E ,theo định lí PI-ta- go có :
AB2 + BE2 = OE2
AB2 + CD2 =( 2.R)2
AB2 + CD2 =4R2
Chứng minh tương tự ,ta có : AC2 + BD2 =4R2
Ta có : AB2 + BD2 + CD2 + AC2 = 8.R2
Câu a)
Vì DE=BC nên: sđ cung BD=sđ cung CE
\(\Rightarrow\)sđ cung BE=sđ cung CD
\(\Leftrightarrow\widehat{BCE}=\widehat{DBC}\)
Tứ giác BCED có DE//BC nên BCED là hình thang
Mà \(\widehat{BCE}=\widehat{DBC}\Rightarrowđpcm\)
Câu b)
Vì ABDC là tứ giác nội tiếp nên: \(\widehat{ABA'}=\widehat{CDA'}\)
Xét \(\Delta ABA'\)và \(\Delta CDA'\)có
+\(\widehat{ABA'}=\widehat{CDA'}\)
+\(\widehat{AA'B}=\widehat{CA'B}\)
Do đó 2 tam giác đó đồng dạng
\(\Rightarrow\frac{AA'}{A'C}=\frac{A'B}{A'D}\)\(\Rightarrowđpcm\)
Câu c)
Gọi giao BH với AC là B'
Tam giác BHD có BA' vừa là đường cao và vừa là đường trung tuyến
nên tam giác BHD cân tại B
\(\Rightarrow\widehat{BHD}=\widehat{BDA}\)
\(\Leftrightarrow\widehat{AHB'}=\widehat{BDA}\)
\(\Leftrightarrow\widehat{AHB'}+\widehat{DAC}=\widehat{BDA}+\widehat{DAC}=\widehat{BDA}+\widehat{DBC}=90^o\)
\(\Leftrightarrow BB'\perp AC\)
Tam giác ABC có H là giao 2 đường cao AA' và BB'
Vậy H là trực tâm của tam giác ABC
Câu d)
Ý 1:
Có: DE//BC mà AD vuông góc BC
Suy ra: AD vuông góc DE
nên tam giác ADE vuông tại D
Suy ra: AE là đường kình đường tròn ngoại tiếp tam giác ADE
Vậy A,O,E thẳng hàng
Ý 2:
Vì BCED là hình thang cân nên:
\(\hept{\begin{cases}BE=CD\\BD=CE\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}BE^2=CD^2\\BD^2=CE^2\end{cases}\Leftrightarrow}\hept{\begin{cases}CD^2+AB^2=BE^2+AB^2=AE^2=4R^2\\AC^2+BD^2=AC^2+CE^2=AE^2=4R^2\end{cases}}\)
Cộng lại sẽ tích đc tổng đó theo R
Hình vẽ:(không biết nó có hiện ra không nên bạn thông cảm)
Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)
ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)
Dau = xay ra khi b=c hay tam giac ABC vuong can tai A
Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d
a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.
b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.
Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)
Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)
Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)
c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)
Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)
Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)
Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)
Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)
Vậy EP = EQ.
+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)
\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)
Lại có \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))
Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)
d. Ta có BD.AC = AB.CD
Lại có do ABCD là tứ giác nội tiếp nên
AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme) \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)
\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)
Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)
Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)
\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)
Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH