Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tam giác AEF và tam giác ABC :
Góc BAC chung
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
⇒ Tam giác AEF ~ tam giác ABC
⇒ góc AEF = góc ABC ( đề sai nhé )
Cach tuong tu
AM-GM \(2+2yz=x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)
\(\Rightarrow1+yz\ge x\left(y+z\right)\Rightarrow x^2+x+yz+1\ge x\left(x+y+z+1\right)\)
\(\Rightarrow\frac{x^2}{x^2+x+yz+1}\le\frac{x}{x+y+z+1}\). Se cm \(x+y+z-xyz\le2\), that vay ap dung C-S
\(x+y+z-xyz=x\left(1-yz\right)+\left(y+z\right)\)\(\le\sqrt{\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]}\)
\(=\sqrt{2\left(1+yz\right)\left[\left(yz\right)^2-2yz+2\right]}=\sqrt{y^2z^2\left(yz-1\right)+4}\le2\)
\(\Rightarrow M\le\frac{x}{x+y+z+1}+\frac{y+z}{x+y+z+1}+\frac{1}{x+y+z+1}=1\)
Dau "=" xay ra khi x=y=1; z=0
Câu 1
a) xy(x+y)-yz(y+z)+zx[(x+y)-(y+z)]=xy(x+y)+zx(x+y)-yz(y+z)-zx(y+z)=x(x+y)(y+z)-z(y+z)(y+x)=(x+y)(y+z)(x-z)
b) \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)
\(\Leftrightarrow\frac{x-z+z-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z+x-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-y+y-x}{\left(y-z\right)\left(y-x\right)}=2022\)
\(\Leftrightarrow\frac{-1}{z-y}+\frac{-1}{z-x}+\frac{-1}{x-z}+\frac{-1}{x-y}+\frac{-1}{x-y}+\frac{-1}{y-z}+\frac{1}{y-z}=2022\)
\(\Leftrightarrow2\left(\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\right)=2022\)
\(\Leftrightarrow\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}=1011\)
Câu 8: bạn sửa lại đề: AB<AC
a) Xét tam giác AHB và tam giác AEP có:
\(\widehat{AHB}=\widehat{AEP}=90^0\)
AH=KE (Tứ giác AHKE là hình vuông)
\(\widehat{HAB}=\widehat{AEP}\)(cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta AHB=\Delta AEP\)(g-c-g)
=> AB=AP (2 cạnh tương ứng) => \(\Delta\)BAP cân tại A
b) Tứ giác ABQP là hình vuông nên IA=IB=IQ=IP (1)
Tam giác BKP vuông tại K nên KP=KB=KI (2)
Từ (1) và (2) suy ra: AI=KI nên I là đường trung trực của AK (3)
Vì AHKE là hình vuông nên HE là trung trực của AK (4)
Từ (3) và (4) suy ra: H;I:E cùng thuộc đường trung trực của AK hay H;I:E thằng hàng (đpcm)
Câu 9: Có \(\widehat{CEA}=\widehat{B}+\widehat{BAE}=\widehat{HAC}+\widehat{EAH}=\widehat{CAE}\)
\(\Rightarrow\Delta CAE\)cân tại C => CA=CE (1)
Qua H kẻ đường thằng song song với AB cắt MF ở K. Ta có \(\frac{BE}{EH}=\frac{MB}{KH}=\frac{MA}{KH}=\frac{FA}{FH}\left(2\right)\)
AE là phân giác của tam giác ABH nên \(\frac{BE}{EH}=\frac{AB}{AH}\left(3\right)\)
\(\Delta CAH\)và \(\Delta CBA\)đồng dạng \(\Rightarrow\frac{AB}{AH}=\frac{CA}{CH}=\frac{CE}{CH}\)(theo (1)) (4)
Từ (2);(3) và (4) => \(\frac{FA}{FH}=\frac{CE}{CH}\)hay \(\frac{AE}{FH}=\frac{CE}{CH}\)=> CF//AE (đpcm)
Câu 10:
Chia các đỉnh của tam giác thành 3 nhóm \(\left\{A_1;A_4;A_7;A_{10}\right\};\left\{A_2;A_5;A_8;A_{11}\right\};\left\{A_3;A_6;A_9;A_{12}\right\}\)
Chọn 3 đỉnh liên tiếp thì mỗi đỉnh vào 1 nhóm
Do vậy số dấu "-" trong mỗi nhóm là +1 hoặc -1
Mà nhóm II và nhóm III cùng tính chẵn lẻ về số dấu "-"
Khi bắt đầu nhóm II, nhóm III số dấu "-" bằng 0. Nếu đỉnh A2 mang dấu "-" các đỉnh còn lại mang dấu "+" thì nhóm II, nhóm III khác đỉnh chẵn lẻ về số dấu "=". Mâu thuẫn!
P.s bài trình bày khó hiểu, bạn thông cảm! :)
mk chỉnh lại đề: Cho tam giác ABC nhọn đường cao BE, CF.....
a) Xét \(\Delta ABE\)và \(\Delta ACF\) có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{AFC}=90^0\)
suy ra: \(\Delta ABE~\Delta ACF\)(g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)
\(\Rightarrow\)\(AB.AF=AE.AC\)
b) \(\frac{AB}{AC}=\frac{AE}{AF}\) (câu a)
\(\Rightarrow\)\(\frac{AB}{AE}=\frac{AC}{AF}\)
Xét \(\Delta ABC\)và \(\Delta AEF\)có:
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AF}\)
suy ra: \(\Delta ABC~\Delta AEF\)(c.g.c)
\(\Rightarrow\)\(\widehat{ACB}=\widehat{AFE}\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
Bài 1:
a) xét tg ABE và tg ACF có:
AEB = AFC = 90 độ
BAE = CÀ( A chung )
=> tg ABE = tg ACF ( g.g)
=> AF/AB = AE/AC
=> AE*AC = AF*AB