K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

OD // EH (cùng _I_ AB)
OE // HD (cùng _I_ AC)
=> OEHD là h.b.h
- - -

\(\Delta EAC\) vuông tại E có \(\widehat{A}=45^0\)
\(\Rightarrow\widehat{DCH}=45^0\)
\(\Delta DHC\) vuông tại D
=> \(\Delta DHC\) vuông cân tại D
=> \(HC=\sqrt{2}HD=\sqrt{2}OE\)
\(\widehat{DHC}=45^0\)
\(\Rightarrow\widehat{NDB}=45^0\) (so le trong, EC // ND)
\(\Rightarrow\widehat{NOE}=45^0\) (đồng vị, EM // BD)
\(\Delta NOE\) vuông tại N
=> \(\Delta NOE\) vuông cân
=> \(OE=\sqrt{2}ON\)
=> HC = 2ON
- - -
\(\Delta DAB\) vuông cân taị D có DN là đ.c.
=> N là t.đ. của AB
=> CN là đ.t.tn. của \(\Delta ABC\)
OEHD là h.b.h. có I là t.đ. của ED
=> I là t.đ. của OH
=> H, O, I thẳng hàng
Gọi K là g.đ. của CN và OH.
\(\Rightarrow\dfrac{KC}{KN}=\dfrac{HC}{ON}=\dfrac{2ON}{ON}=\dfrac{2}{1}\)
\(\Rightarrow\dfrac{KC}{NC}=\dfrac{KC}{KN+KC}=\dfrac{2}{1+2}=\dfrac{2}{3}\)
=> HI đi qua trọng tâm của ​\(\Delta ABC\)

13 tháng 9 2018

đ.t.tn là g

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

2 tháng 1 2019

bn hãy trả lời thật zui zẻ nghen

2 tháng 1 2019

what?

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi

17 tháng 3 2023

Giải