\(4\text{m}^2_{\text{a}}=b\left(b+4c.cosA...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2022

\(4m_a^2=b\left(b+4c.cosA\right)=b^2+4bc.cosA\)

\(\Leftrightarrow4\left(\dfrac{2b^2+2c^2-a^2}{4}\right)=b^2+4bc.\dfrac{b^2+c^2-a^2}{2bc}\)

\(\Leftrightarrow2b^2+2c^2-a^2=b^2+2\left(b^2+c^2-a^2\right)\)

\(\Leftrightarrow a^2=b^2\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\Delta ABC\) cân tại C

NV
30 tháng 4 2019

\(sin^3A.sin\left(B-C\right)=sin^2A.sinA.sin\left(B-C\right)\)

\(=sin^2A.sin\left(B+C\right).sin\left(B-C\right)=-\frac{1}{2}sin^2A\left(cos2B-cos2C\right)\)

\(=-\frac{1}{2}sin^2A\left(1-2sin^2B-1+2sin^2C\right)=sin^2A.sin^2B-sin^2A.sin^2C\)

b: \(\left|\overrightarrow{GB}\right|=GB=GA=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

c: \(\left|\overrightarrow{GA}+\overrightarrow{GB}\right|\)

\(=\sqrt{GA^2+GB^2+2\cdot GA\cdot GB\cdot cos\left(GA,GB\right)}\)

\(=\sqrt{2\cdot\left(\dfrac{a\sqrt{3}}{3}\right)^2+2\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{-1}{2}}\)

\(=\sqrt{2\cdot\dfrac{1}{3}\cdot a^2-\dfrac{a^2}{3}}=\sqrt{\dfrac{a^2}{3}}\)

11 tháng 12 2017

Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2

23 tháng 10 2018

a) gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 2MI|= |BA|

|MI|= 1/2|BA|

=> M thuộc đường tròn tâm I, bán kính =1/2 BA

23 tháng 10 2018

B) gọi G là trọng tâm của tam giác ABC

=> GA+ GB+ GC=0

gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 3MG|= 3/2| 2 MI|

3| MG|= 3| MI|

| MG|= | MI|

=> M thuộc đường trung trực của đoạn thẳng GI

18 tháng 11 2022

Bài 2:

Gọi M là trung điểm của AB,N là trung điểm của CD

vecto GA+vecto GB+vecto GC+vecto GD=vecto 0

=>2 vetco GM+2 vecto GN=vecto 0

=>vecto GM+vecto GN=vecto 0

=>G là trung điểm của MN

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FKa) chứng minh tam giác DEF là tam giác đềub) chứng minh tam giác DIK là tam giác cânc) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=nbai 2: cho  góc...
Đọc tiếp

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK

a) chứng minh tam giác DEF là tam giác đều

b) chứng minh tam giác DIK là tam giác cân

c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n

bai 2: cho  góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)

a) chung minh tam giác HAB là tam giác cân

b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox

c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA

giải giúp mình đi mình đang cần gấp

 

1

Bài 2: 

a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có 

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOHA=ΔOHB

Suy ra: HA=HB

hay ΔHAB cân tại H

b: Xét ΔOAB có

OH là đường cao

AD là đường cao

OH cắt AD tại C

Do đó: C là trực tâm của ΔOAB

Suy ra: BC\(\perp\)Ox

c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)

Xét ΔOHA vuông tại A có 

\(\cos HOA=\dfrac{OA}{OH}\)

\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)

a: Xét ΔAMB va ΔAMC có

AM chung

MB=MC

AB=AC
Do đó: ΔAMB=ΔAMC

b: Xét tứ giác ABCE có

D la trung điểm của AC

D là trung điểm của BE

Do đó:ABCE là hình bình hành

SUy ra: AE//BC