Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm của hai đường phân giác góc ngoài tại B và C
Kẻ KE,KD,KF vuông góc lần lượt với BC,AB,AC
Xét ΔBDK vuông tại D và ΔBEK vuông tại E có
KB chung
\(\widehat{DBK}=\widehat{EBK}\)
Do đó: ΔBDK=ΔBEK
Suy ra: KD=KE(1)
Xét ΔCEK vuông tại E và ΔCFK vuông tại F có
CK chung
\(\widehat{ECK}=\widehat{FCK}\)
Do đó;ΔCEK=ΔCFK
Suy ra: KE=KF(2)
Từ (1) và (2) suy ra KD=KF
hay K nằm trên đường phân giác của góc A(Đpcm)
Gọi K là giao điểm của hai tia phân giác của góc ngoài tại đỉnh B và góc ngoài tại đỉnh C.
Kẻ KE ⊥ BC, KF ⊥ AC, KD ⊥ AB
Vì K nằm trên phân giác của ∠(CBD) nên:
KD = KE (tính chất tia phân giác) (1)
Vì K nằm trên tia phân giác của ∠(BCF) nên:
KE = KF (tính chất tia phân giác) (2)
Từ (1) và (2) suy ra: KD = KF
Điểm K nằm trong ∠(BAC) cách đều 2 cạnh AB và AC nên K nằm trên tia phân giác của ∠(BAC) .
bài này làm sao vậy khó quá bạn vào giúp mình giải với mình k xem đc trả lời của bài này
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!