K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Sửa câu a thành CM: BM = CM 

A B C D E M K

  GT  

 △ABC cân tại A ( BAC = 70o)

 BAM = MAC = BAC/2

 MD ⊥ AB (D \in  AB) ;ME ⊥ AC (E \in AC)

 ME = MK

  KL

 a, BM = CM

 b, △DME cân

 c, DE // BC

 d, MDK = ?

Bài giải:

Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB

Xét △BAM và △CAM

Có: AB = AC (cmt)

    BAM = MAC (gt)

   AM là cạnh chung

=> △BAM = △CAM (c.g.c)

=> BM = CM (2 cạnh tương ứng)

b, Xét △DBM vuông tại D và △ECM vuông tại E

Có: BM  = MC (cmt)

   DBM = ECM (cmt)

=> △DBM = △ECM (ch-gn)

=> DM = EM (2 cạnh tương ứng)

Xét △DME có: DM = EM (cmt) => △DME cân tại M

c, Vì △DBM = △ECM (cmt)

=> DB = EC (2 cạnh tương ứng))

Ta có: AD + DB = AB

AE + EC = AC

Mà AB = AC (cmt) ; DB = EC (cmt)

=> AD = AE 

Xét △ADE có: AD = AE (cmt) => △ADE cân tại A => ADE = (180o - DAE) : 2   (1)

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2    (2)

Từ (1) và (2) => ADE = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

d, Ta có: ABC = (180o - BAC) : 2 (cmt)

=> ABC = (180o - 70o) : 2 = 110o : 2 = 55o 

Mà ABC = ACB (cmt)

=> ACB = 55o 

Xét △BMK và △CME

Có: BM = MC (cmt)

    BMK = EMC (2 góc đối đỉnh)

      MK = ME (gt)

=> △BMK = △CME (c.g.c)

=> MBK = MCE (2 góc tương ứng)

Mà MCE = 55o 

=> MBK = 55o 

Ta có: DBK = DBM + MBL = 55o + 55o = 110o 

Lại có: DMB = EMC (△DBM = △ECM)

Mà EMC = BMK (2 góc đối đỉnh)

=> DMB = BMK

Ta có: MK = ME (gt)

Mà ME = DM (cmt)

=> DM = MK

Xét △BDM và △BKM

Có: BM là cạnh chung

      DMB = BMK (cmt)

      MD = MK (cmt)

=> △BDM = △BKM (c.g.c)

=> BD = BK (2 cạnh tương ứng)

=> △BDK cân tại B

=> BDK = (180o - KBD) : 2 = (180o - 110o) : 2 = 70o : 2 = 35o 

Ta có: BDM + MDA = 180o (2 góc kề bù)

=> BDK + MDK + 90o = 180o 

=> BDK + MDK = 90o 

=> 35o + MDK = 90o 

=> MDK = 55o 

30 tháng 1 2020

Cho tam giác ABC. Lấy D,E trên cạnh AB sao cho AD=DE=EB. vẽ DG và EF song song với BC (F và G thuộc AC)

a,  chứng minh: AG=GF=FC

b,  giả sử DG=3cm.  Tính BC

11 tháng 1 2019

xét 2 tam giác ABM=tam giác ACM(c.c.c)(tự cm)

nên góc AMB=góc AMC=180ddooj /2=90 độ

suy ra AM vuông góc vs BC

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~

20 tháng 4 2017

sao vẽ dc hình z Thành Đạt

5 tháng 2 2019

A B C E D I

Cm: Ta có : góc BAC + góc CAD = 1800 (kề bù)

=> góc CAD = 1800 - góc BAC = 1800 - 900 = 90(1)

Và AD = AE (gt) (2)

Từ (1) và (2) suy ra t/giác AED là t/giác vuông cân tại A

b) Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

  góc BAC = góc CAD = 900(cmt)

 AE = AD (gt)

=> t/giác  ABE = t/giác ACD (c.g.c)

=> BE = CD (hai cạnh tương ứng)

c) Gọi giao điểm của BE và DC là I

tự làm

d) tự làm 

18 tháng 7 2019

A B C E D M M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

18 tháng 7 2019

A B C M E F N

CM:a) Xét t/giác ABM và ACM

có: AB = AC (gt)

  \(\widehat{BAM}=\widehat{CAM}\) (gt) 

   AM : chung

=> t/giác ABM = t/giác ACM (c.g.c)

=> BM = CM (2 cạnh t/ứng)

=> M là trung điểm của BC

b) Ta có: AE + AC = EC 

         AF + AB = FB

mà AE = AF (gt); AB = AC (gt)

=> EC = FB

Xét t/giác BCE và t/giác CBF

có: BC : chung

  \(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)

 EC = FB (cmt)

=> t/giác BCE = t/giác CBF (c.g.c)

c) Xét t/giác BEM và t/giác CFM

có: EB = FC (vì t/giác BCE = t/giác CBF)

 \(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)

 BM = CM (cm câu a)

=> t/giác BEM = t/giác CFM (c.g.c)

=> ME = MF (2 cạnh t/ứng)

d) Xét t/giác AEN và t/giác AFN

có: AE = AF (gt)

  EN = FN (gt)

  AN : chung

=> t/giác AEN = t/giác AFN (c.c.c)

=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)

=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)

AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)

Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)

=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)

Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\) 

hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)

=> A, M, N thẳng hàng