Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
c,
- Xét Δ AHM và Δ AKM có:
+ Góc AHM = góc AKM = 900 (gt)
+ AM là cạnh chung
+ Góc HAM = góc KAM (AM là phân giác)
=> ΔAHM = Δ AKM (cạnh huyền - góc nhọn)
=>AH = AK (hai cạnh tương ứng )
=> Δ AHK cân tại A (gt)
=> +) Góc AHK = (180 - góc BAC) / 2
+) Góc ACB = (180 - góc BAC) / 2
=> Góc AHK = góc ACB
mà hai góc này ở vị trí đồng vị
=> HK // BC (đpcm)
\(a,BC=\sqrt{\left(AB^2+AC^2\right)}=5cm\)
\(b,\)Tam giác ABD = Tam giác HBD ( cạnh huyền - góc nhọn )
\(\Rightarrow DA=DH\)
\(c,\Delta ADE=\Delta HDC\left(g.c.g\right)\)
\(\Rightarrow DE=DC\)
\(\Rightarrow\)TAM GIÁC DEC CÂN
\(d,\)Ta có :
\(DC>HC\)
\(\Rightarrow BH+DH+DC>DH+BH+HC\)
Mà \(BH=AB;DH=AD\)
\(\Rightarrow AB+AD+DC>DH+BC\)
\(\Rightarrow AB+AC>DH+BC\)
Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).
a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).
Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\), \(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)
suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).
b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).
Suy ra \(EB\perp MC\).
c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)
suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn)
suy ra \(AB=EC\)
mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))
nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)
suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)
mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)
mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).
d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong)
suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))
Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).
suy ra tam giác \(AIE\)đều (vì \(IE=IA\))
suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).
Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: BD là cạnh chung
góc ABD = góc EBD (gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AB = EB = 6 cm ( 2 cạnh tương ứng)
=> EB = 6 cm
Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)
thay số: \(6^2+8^2=BC^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
mà \(E\in BC\)
=> EB + EC = BC
thay số: 6 + EC = 10
EC = 10 - 6
=> EC = 4 cm
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
AB = EB ( 2 cạnh tương ứng) (1)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: AD = ED ( chứng minh trên)
góc ADI = góc EDC ( đối đỉnh)
\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)
=> AI = EC ( 2 cạnh tương ứng)(2)
Từ (1);(2) => AB + AI = EB + EC
=> BI = BC
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)
Từ (1);(2) => AD <DC
mk ko bít kẻ hình trên này!
B
B