K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

Xét △ACI và △BCI 

Có: AC = BC (gt)

      ACI = BCI (gt)

   CI là cạnh chung

=> △ACI = △BCI (c.g.c)

b, Vì △ACI = △BCI (cmt)

=> AI = IB (2 cạnh tương ứng)

và AIC = BIC (2 góc tương ứng)

Mà AIC + BIC = 180o (2 góc kề bù)

=> AIC = BIC = 180o : 2 = 90o

=> CI ⊥ AB

c, Ta có: IA + IB = AB   => 2IA = 10 => IA = 5 (cm)

Xét △ACI vuông tại I có: CI2 + AI2 = AC2 (định lý Pytago)

=> CI2 = AC2 - AI2 = 132 - 52 = 144 

=> CI = 12 (cm)

d, Xét △HCI vuông tại H và △KCI vuông tại K

Có: HCI = KCI (gt)

       CI là cạnh chung

=> △HCI = △KCI (ch-gn)

=> IH = IK (2 cạnh tương ứng)

21 tháng 5 2016

Ban tự vẽ hình nha, mk ko biết up hình lên đây

a) Ta thấy: Tam giác ABC cân tại C (CA = CB)

Xét 2 tg vuông ACI và tg vuông BCI có:

 CA = CB (gt)

góc CAI = góc CBI (tg ABC cân tại C)

=>      tg ACI = tg BCI (cạnh huyền - góc nhọn)

=>      IA = IB (2 cạnh tương ứng)

b) Ta có: IA = IB = 1/2,AB = 1/2.12 = 6 (cm)

Áp dụng định lí Pitago vào tg vuông ACI, có:

\(CA^2=IA^2+IC^2\)

\(\Rightarrow IC^2=CA^2-IA^2\)

\(\Rightarrow IC^2=10^2-6^2=64\)

\(\Rightarrow IC=8\)

Vậy IC = 8 (cm)

c) Xét 2 tg vuông CHI và tg vuông CKI có:

CI là cạnh chung

góc HCI = góc KCI (2 góc tương ứng do tg ACI = tg BCI)

=>  tg CHI = tg CKI (cạnh huyền - góc nhọn)

=>   IH = IK (2 cạnh tương ứng)

Trong tg vuông ACI, ta có:

\(S\Delta ACI=\frac{IH.CA}{2}=\frac{CI.IA}{2}\)

\(\Rightarrow IH.CA=CI.IA\)

\(\Rightarrow IH=\frac{CI.IA}{CA}=\frac{8.6}{10}=\frac{48}{10}=4,8\)

Vậy IH = IK = 4,8 (cm)

21 tháng 5 2016

a, Xét tg IAC và tg IBC vuông tại I

Ta có : AC=BC(gt)

AC cạnh chung

Nên : tg IAC = tg IBC

Vậy : IA=IB (đpcm)

b, Ta có : I là giao điểm của AB vì : IA=IB (cmt)

=> IA=IB=12.1/2=6

+Áp dụng định lý pi-ta-go có :

IB2+IC2=BC2

62+IC2=102

IC2     =102-62

IC2     =8

Vậy : IC=8

c, k bt lm

14 tháng 3 2020

I thuoc ab nha ^^

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

26 tháng 1 2017

A B C I H K

\(\Delta⊥CIA\)và \(\Delta⊥CIB\)có 

CA=CB(=10cm)

góc A = góc B ( CA=CB(=10cm) do đó tam giác CAB cân tại C )

do đó \(\Delta CIA=\Delta CIB\)( cạnh huyền - cạnh góc vuông )

suy ra IA = IB ( 2 cạnh tương ứng )

b)

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp

12 tháng 4 2015

a)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=\(\sqrt{64}\)=8(cm)
c0 Tam giác ABC cân tại góc A
=>Góc C1=góc C2
Xét hai tam giác vuông CIK và CIA, ta có:
GócC1=góc C2(cmt)
IC: cạnh chung
=>tam giácCIK= tam giác CIH (cạnh huyền_góc nhọn)
=>IH=IK (hai cạnh tương ứng)
 

2 tháng 2 2017

thanh thảo trả lời sai rồi​

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

THẾ MÀ CÓ 6 NGƯỜI BẢO LÀ ĐÚNG