K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

b/ Có AE // BC (GT)

=> \(\widehat{EAN}=\widehat{ABC}\)

Xét t/g EAN và t/g MBN có

\(\widehat{EAN}=\widehat{ABC}\) (cmt(AN = BN (GT)

\(\widehat{ENA}=\widehat{MNB}\) (đối đỉnh)

=> t/g EAN = t/g MBN (g.c.g)

=> AE = MB 

Mà CM = BM (do t/g ABM = t/g ACM) ; M thuộc BC)

=> M là trung điểm BC=> 2AE = 2 MN=BC

c/ Có 

AM ⊥ BC (GT)AE // BC

=> AM ⊥ AE

=> \(\widehat{EAO}=\widehat{OMC}=90^o\)

Xét t/g EAO và t/g CMO có

EA = CM (=BM)\(\widehat{EAO}=\widehat{OMC}=90^o\)

AO = MO

=> t/g EAO = t/g CMO (c.g.c)=> \(\widehat{EOA}=\widehat{COM}\)

Mà 2 góc này đối đỉnh

=> E , O , C thẳng hàng.

16 tháng 1 2021

cảm ơn bn nhìu nhoa

 

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên Tam giác ABM=tam giác ACM (c.g.c) Vì tam giác ABC cân tại A và AM là tia phân giác của góc BAC nên AM cũng là đường cao của tam giác ABC kẻ từ đỉnh A đến đường thẳng chứa cạnh BC. => AM _|_ BC. b) Ta có: Tam giác ABM = Tam giác ACM (cmt) =>BM=CM(2cạnh tương ứng) =>AM là đường trung tuyến của BC. Ta có: AM là đường trung tuyến của BC (cmt) BQ là đường trung tuyến của AC(gt) BQ cắt AM tại G (gt) => G là giao điểm của 3 đường trung tuyến trong tam giác ABC. =>G là trọng tâm của tam giác ABC. (đpcm) c) Ta có: BM=CM (cmt) => BM=CM=BC/2=18/2=9 (cm) Xét tam giác ABM vuông tại M (do AM_|_BC(cmt)) Áp dụng định lí Pitago ta có: AM^2+BM^2=AB^2 => AM^2=AB^2-BM^2 => AM^2=15^2-9^2 => AM^2=225-81 => AM^2= 144 Do AM>0 nên AM=√144=12cm Mà AG=2/3AM(tính chất 3 đường trung tuyến của tam giác) =>AG=2/3.12=8cm d) (Làm như bạn kia) CHÚC BẠN HỌC TỐT!!!
1 tháng 7 2018

â)xét tam giác AMBvà tam giác AMC

AB=AC( gt)

AM chung

MB=MC ( M là trung điểm của BC )

=> tam giác AMB= tam giác AMC ( c.c.c)

=> góc AMB= góc AMC ( 2 góc tương ứng )

mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )

=> góc AMB= góc AMC=90O

=> AM vuông góc với BC

b) xét tam giác ADF và tam giác ADE

DF=DE ( gt)

góc ADF= góc CDE ( 2 góc đối đỉnh )

AD=CD ( D là trung điểm của AC)

=> tam giác ADF = tam giác ADE ( c.g.c)

=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE

=.> AF// CE

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath