Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: A B C D x
Cm: Do Bx nằm giữa tia BA và BC nên \(\widehat{ABx}+\widehat{xBC}=\widehat{B}\)
=> \(\widehat{xBC}< \widehat{B}\) hay \(\widehat{DBC}< \widehat{B}\)(1)
D là điểm nằm ngoài t/giác ABC => tia CA nằm giữa CB và CD
=> \(\widehat{BCA}+\widehat{ACD}=\widehat{BCD}\)
=> \(\widehat{BCA}< \widehat{BCD}\) (2)
Mà \(\widehat{B}=\widehat{BCA}\) (Vì t/giác ABC cân tại A) (3)
Từ (1); (2); (3) => \(\widehat{DBC}< \widehat{BCD}\)
=> DC < BD (quan hệ giữa cạnh và góc đối diện)
Xét △ BCF và △ CBE có:
\(\widehat{B}=\widehat{C}\) ( △ ABC cân tại A )
BC chung
\(\widehat{E}=\widehat{F}\left(=90^0\right)\)
⇒ △ BCF = △ CBE
⇒ BE = CF ( 2 cạnh tương ứng ) (1)
Có \(\widehat{DCF}>90^0\) ⇒ DF > CF (2)
Từ (1) và (2) ⇒ DF > BE
1: Xét ΔCBD có CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác của góc BCD
2: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
Xét ΔCBD có CE/CD=CF/CB
nên EF//BD
3: IE=IF
IF<IB
=>IE<IB
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
a: Xét ΔACD có \(\widehat{ACD}\) là góc tù
nên AD là cạnh lớn nhất
Suy ra: AD>AC
hay AD>AB