Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của BE và CD là I.
Xét tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)cắt lần lượt tại D và E nên:
\(\widehat{ICB}=\widehat{IBC}\) và ID=IE
Vậy tam giác IBC cân và IB=IC.
Xét tam giác IBD và tam giác IEC có:
\(\widehat{EIC}=\widehat{DIB}\)(đối đỉnh)
IB=IC(cmt)
ID=IE(cmt)
Suy ra \(\Delta IDB=\Delta EIC\)(c.g.c)
=>BD=CE(2 cạnh tương ứng)
1 1 2 2 A B C D E
+) Xét \(\Delta\)ABC cân tại A
\(\Rightarrow\) AB = AC ( tính chất tam giác cân )
và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\frac{\widehat{ABC}}{2}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}\)
+) Xét \(\Delta\) ABD và \(\Delta\) ACE có
\(\widehat{B_1}=\widehat{C_2}\) ( cmt)
AB = AC ( cmt)
\(\widehat{A}\) : góc chung
=> \(\Delta\)ABD = \(\Delta\) ACE (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
@@ Học tốt
Takigawa Miu_
Ta có: DMB=MBC (so le trong)
mà DBM=MBC(giả thiết)
=>DMB=DBM.
=>DMB là tam giác cân(ĐPCM)
=>DM=DB*
Làm tương tự như trên ta có :
EMC=ECM.
=>MEC là tam giác cân.
=>EM=CE.**
Từ *và**,=>DB+CE=DM+ME=DE(ĐPCM).
xét tam giác ABD và tam giác ACE có:
góc A là góc chung
AB = AC ( tam giác cân tại A)
AD = AE(gt)
suy ra: tam giác ABD= tam giác ACE ( c-g-c)
vậy BD = CE ( 2 góc tương ứng)
A B C D E 1 2 1 2
Xét 2 tâm giác BEC và tam giác CDB có
BC ( chung )
\(\widehat{ABC}=\widehat{ACB}\) ( theo giả thiết )
\(\widehat{B_2}=\widehat{C_1}\)( hai góc phân giác của 2 góc bằng nhau )
\(\Delta BEC=\Delta CDB\)(g.c.g )
\(\Rightarrow BD=EC\)