K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :

AB2 + AC2 = BC2

\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82 

\(\Rightarrow\)AC = 8 cm

theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )

b) Xét tam giác DAC và tam giác BAC có :

AB = AD ( gt )

\(\widehat{DAC}=\widehat{BAC}=90^o\)

AC ( cạnh chung )

\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )

\(\Rightarrow\)DC = BC

\(\Rightarrow\)tam giác DCB cân tại C

c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC

\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm  

d)  Nối A với Q.

Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)

Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)

\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA

Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M

Suy ra : 3 điểm B,M,Q thẳng hàng

27 tháng 4 2018

áp dụng định lí py-ta-go ta có

AB^2+AC^2=BC

=6^2+AC^2=10^2

12+AC^2=20

SUY RA AC=20-12=8 

CĂN BẬC 2 CỦA 8 LÀ 4

SUY RA AC=4

GÓC B <C<A

16 tháng 12 2021

Xét ΔBCD có

CA là đường trung tuyến

CA=BD/2

Do đó: ΔBCD vuông tại C

23 tháng 12 2016

AB = AC (tam giác ABC cân tại A)

mà AB = \(\frac{1}{2}\) BD (A là trung điểm của BD)

=> AC = \(\frac{1}{2}\) BD

mà AC là đường trung tuyến của tam giác CDB (A là trung điểm của BD)

=> Tam giác CDB vuông tại C

=> BCD = 900