K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2022

help me

 

12 tháng 3 2022

a)Áp dụng định lí Py-ta-go vào tam giác AHB ta được:

HB2+HA2=AB2 

\(\Rightarrow\) 32+42=AB2

\(\Rightarrow\) 9+16 =AB2

\(\Rightarrow\)\(\sqrt{AB}\) =25

\(\Rightarrow\)AB =5

b) tam giác AKH có AI vuông góc với KH(gt) , IH=IK(gt)

\(\Rightarrow\) AI vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\) tam giác AKH cân tại A

24 tháng 2 2020

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

2 tháng 2 2020

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

10 tháng 3 2022

Help gấp;-;

10 tháng 3 2022

Nhanh mn ưi

a: XétΔAIB vuông tại I và ΔAIC vuông tại I có

AB=AC

AI chung

=>ΔAIB=ΔAIC

b: Xét ΔCIE có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCIE cân tại C

16 tháng 3 2021

câu c có vẻ sai thông cảm

a: Xét ΔAEH có

AB vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

=>AE=AH

b: Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAHF cân tại A

=>AH=AF=AE

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có

HA=HK

HB=HI

=>ΔABH=ΔKIH

b: ΔABH=ΔKIH

=>góc ABH=góc KIH

=>AB//IK

c: IK//AB

AB vuông góc AC

=>IK vuông góc AC

=>I,K,E thẳng hàng

d: Xét tứ giác ABKI có

H là trung điểm chung của AK và BI

AK vuông góc BI

=>ABKI là hình thoi

=>AB=AI=IK

=>IK=ID

=>góc IKD=góc IDK