K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

B A C D E H

Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.

a/ Xét \(\Delta ABD\)vuông tại \(D\)có:

\(AD^2+BD^2=AB^2\left(pytago\right)\)

\(AD^2+8^2=10^2\)

\(AD^2=10^2-8^2=100-64=36\)

\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)

b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC

=> AH là đường cao thứ 3 (Vậy thôi đủ xài)

=> AH cũng là đường phân giác vì tam giác ABC cân tại A

Xét \(\Delta AEH\)và \(\Delta ADH\)có:

\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)

\(\Rightarrow AE=AD\)

Xét \(\Delta AEC\)và \(\Delta ABD\)có:

\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

\(\Rightarrow CE=BD\)

c/ (đã chứng minh câu b)

d/ Vì tam giác AEC = tam giác ADB 

=> \(\widehat{ACE}=\widehat{ABD}\)

Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)

\(\Rightarrow\Delta BHC\)cân tại \(H\)

e/ Xét \(\Delta AHD\)vuông tại \(H\)có:

\(AD^2+HD^2=AH^2\left(pytago\right)\)

\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)

\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)

26 tháng 1 2016

Trang chelsea chht là sao

26 tháng 1 2016

xin lỗi em mới học lớp 6

16 tháng 4 2022

Cứu tớ vsss:<

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đo: ΔABD=ΔACE

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

Suy ra: \(\widehat{EAI}=\widehat{DAI}\)

hay AI là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó:ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

Do đó: ΔADI=ΔAEI

Suy ra: \(\widehat{DAI}=\widehat{EAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔADE có AD=AE
nên ΔADE cân tại A

22 tháng 1 2021

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

22 tháng 1 2021

 Xét tg ABC có:

+ BD là đườg cao (BD vuông góc AC)

+ CE là đg cao (CE vuông góc AB)

Mà BD giao CE tại I (gt)

=> I là trực tâm

=> AI là đường cao

Xét tg ABC cân tai A có: AI là đường cao (cmt)

=> AI cũng là đường pg góc BAC ( Tc tg cân)

 

20 tháng 1 2021

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

22 tháng 1 2021

a) 

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

b) Xét tg ABC có:

+ BD là đườg cao (BD vuông góc AC)

+ CE là đg cao (CE vuông góc AB)

Mà BD giao CE tại I (gt)

=> I là trực tâm

=> AI là đường cao

Xét tg ABC cân tai A có: AI là đường cao (cmt)

=> AI cũng là đường pg góc BAC ( Tc tg cân)

22 tháng 1 2021

Bruhundefined

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé