Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác abc cân tại a chứng tỏ ab=ac. Mà sao bạn lại còn mở ngoặc ghi ab<ac
a)Vì trung trực của AC cắt BC tại M=>MA+MC =>Tam giác MAC cân tại M mà có góc đáy bằng góc C mà góc C là góc đáy của tam giác cân tại A=>AMC=BAC(Hai góc ở đỉnh của hai tam giác cân)
b)Xét tam giác CAN và tam giác ABM có:
AB=AC(gt)
MB=AN(gt)
Mà NAC=C+A(vì góc MAC=góc A)
ABM=C+A
=>NAC= ABM
=>Tam giác CAN=tam giác ABM(c.g.c)
=>MA=NC mà MA=MC(c/m trên)=>CM=NC
c)Thêm điều kiện góc A=450
A) Vì trung trực của AC cắt BC tại M ==> Tam giác MAC cân tại M mà nó lại có góc đáy bằng góc C mà góc C lại là góc đáy của tam giác cân tại A ==> AMC = BAC(Hai góc ở đỉnh của hai tam giác cân)
B) Xét tam giác CAN và tam giác ABM có:
AB = AC (gt)
MB = AN (gt)
Mà NAC = C + A (vì góc MAC bằng với góc A)
ABM = C + A
- NAC = ABM
- Tam giác Can = Tam giác ABM (c.g.c)
MA = NC mà MA = CM (c/m trên) ==> CM = NC
C)Thêm điều kiện góc phải là 450
"<3" hóng ng` làm đc
A B C M P Q
Xét \(\Delta APC\)ta có:
PM là đường trung tuyến ứng với cạnh AC ( MA = MC )
PM là đường cao ứng với cạnh AC \(\left(PM\perp AC\right)\)
\(\Rightarrow\Delta APC\)là tam giác cân tại P ( quan hệ giữa các đường trong tam giác cân )
\(\Rightarrow\widehat{PAC}=\widehat{C_1}\)( tính chất ) (1)
Ta có: \(\hept{\begin{cases}\widehat{A_1}=180^o-\widehat{PAC}\\\widehat{B_1}=180^o-\widehat{B_2}\end{cases}}\)( 2 góc kề bù ) (2)
Lại có: \(\Delta ABC\)cân tại A
=> \(\widehat{B_2}=\widehat{C_1}\)( tính chất ) (3)
Từ (1) ; (2) ; (3)
\(\Rightarrow\widehat{A_1}=\widehat{B_1}\)
Mà:
\(\hept{\begin{cases}\widehat{A_2}=180^o-\widehat{A_1}-\widehat{A_3}\\\widehat{APC}=180^o-\widehat{B_1}-\widehat{A_3}\end{cases}}\)( nguyên nhân: tự viết )
\(\Rightarrow\widehat{A_2}=\widehat{APC}\)
đpcm
C/m: tam giác PAB=tam giác QCA ( c.g.c ) là xong