K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A 

mà AM là trung tuyến

nên AM vuông gócBC

29 tháng 7 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A 

mà AM là trung tuyến

nên AM vuông gócBC

18 tháng 9 2023

a)

Xét 2 tam giác vuông AMC và AMB có:

AM chung

BM=CM (gt)

=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)

=> AC=AB (2 cạnh tương ứng)

=> Tam giác ABC cân tại A

b)

Kẻ MH vuông góc với AB (H thuộc AB)

     MG vuông góc với AC (G thuộc AC)

Xét 2 tam giác vuông AHM và AGM có:

AM chung

\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)

=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)

=> HM=GM (2 cạnh tương ứng)

Xét 2 tam giác vuông BHM và CGM có:

BM=CM (giả thiết)

MH=MG(chứng minh trên)

=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)

=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)

=>Tam giác ABC cân tại A.

18 tháng 9 2023

Bạn ơi copy ghi tham khảo

 

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A 

mà AM là trung tuyến

nên AM vuông gócBC

12 tháng 1 2018

A B m 2 1

Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó

Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)

Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)

Lại có tam  giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)

Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)

Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau

Do  đó Am//BC . (dpcm)

26 tháng 2 2020

bọn óc chó

5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

6 tháng 4 2017

xét tam giác ABM và ACM có : 

     AB=AC ( tam giác ABC cân tại A )

     AM là cạnh chung (gt)

     BM=MC (AM là trung tuyến của tam giác ABC )

=> Tam giác ABM = tam giác ACM (c-c-c)

=> góc BAM = góc MAC (2-g-t-ứ)

=> AM là tia phân giác của gócA

6 tháng 4 2017

b) vì tam giác ABM= tam giác ACM (cmt)

=> góc AMB= góc AMC (2-g-t-ứ)

mà góc AMB+ góc AMC = 180 độ (kề bù )

=> góc AMB = góc AMC = góc BMC/2 =90 độ

=> AM vuông góc vs BC

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

18 tháng 9 2023

Xét 2 tam giác AMB và AMC có:

AM chung

AB=AC (do tam giác ABC cân tại A)

MB=MC (gt)

\(\Rightarrow\) \(\Delta AMB=\Delta AMC\) (c.c.c)

\(\Rightarrow\) \(\widehat {BAM} = \widehat {CAM}\)(2 góc tương ứng).

Mà tia AM nằm trong góc BAC

\(\Rightarrow\) AM là phân giác của góc BAC

Mặt khác: Do \(\Delta AMB=\Delta AMC\) nên \(\widehat {AMB} = \widehat {AMC}\)(2 góc tương ứng) mà \(\widehat {AMB} + \widehat {AMC} = {180^o}\)( 2 góc kề bù)

Nên: \(\widehat {AMB} = \widehat {AMC} = {90^o}\).

Vậy AM vuông góc với BC.