K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Hình thì Wii tự vẽ nhé.

1/ Ta có:\(AH⊥MN\) (giả thuyết)

AH là phân giác trong của  \(\widehat{A}\)(giả thuyết)

\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)

\(\Rightarrow\Delta MAN\)cân tại A

\(\Rightarrow MH=HN=\frac{MN}{2}\)

\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)

2/ Từ B kẽ BK // CN

\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)

\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)

\(\Rightarrow\Delta MBK\) cân tại B

\(\Rightarrow BM=BK\left(1\right)\)

Xét \(\Delta BKD\)và \(\Delta CND\)

\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)

\(BD=DC\)(gt)

\(\widehat{BDK}=\widehat{CDN}\)

\(\Rightarrow\Delta BKD=\Delta CND\)

\(\Rightarrow BK=CN\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BM=CN\)

3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)

Xét  \(\Delta FMN\)và \(\Delta MAI\)

\(FM=MA\)(gt)

\(\widehat{FMN}=\widehat{MAI}\)(theo 3)

\(MN=AI\)

\(\Rightarrow\Delta FMN=\Delta MAI\)

8 tháng 12 2015

a) Xét tam giác ABI và tam giác ACI có:            AB=AC

                                                                   AI là cạnh chung

                                                                   BI=IC

                                                                  =>tam giác ABI=tam giác ACI( c.c.c)

                                                      =>góc ABI=góc ACI

             b) Ta có:  MBA+ABI=180o ; ACI+ACN=180o

                    Mà ABI=ACI

 =>MBA=ACN

Xét tam giác AGM và tam giác ACN có:

AB=AC

BM=CN

MBA=ACN

=> tam giác AGM= tam giác ACN (c.g.c)

=>AM=AN( 2 cạnh tương ứng)

14 tháng 12 2020

Tìm kiếm - Kết quả tìm kiếm | Học trực tuyến

Hình tự vẽ

a) Ta có : 

AG = GD . Mà GM = \(\frac{1}{2}\) AG 

=> GD = \(\frac{1}{2}\) AG 

Do AG = \(\frac{1}{3}\) AM

=> GD = \(\frac{2}{3}\) AM  (*)

Xét tứ giác GBDC ta có:

BM = MC ( gt ) (1)

GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)

Từ (1)(2) => Tứ giác GBDC là hình bình hành 

=> GC// và =BD ; BG // và =DC 

Xét tam giác ABD ta có:

AP = P B ( gt ) ( 3)

AG = GD ( gt ) (4)

Từ (3)(4) => PG là đường trung bình của tam giác ABD 

=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC 

Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)

Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )

=> NG=\(\frac{2}{3}\)BN (***)

Từ (*)(**)(***) => Đpcm

b) Xét tam giác DBA ta có :

AG = GD ( gt )

BF=FD ( gt ) 

=> GF là đường trung bình bình của tam giác DAB 

=> GF = \(\frac{1}{2}\)AB( 5)

Ta có : DC = GB ( cm ở câu a )

Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)

=> EN = BG => EN= DC 

Mà BG// DC ( cm ở câu a) 

=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )

=> DE=NC

Mà NC =\(\frac{1}{2}\)AC (6)

=> AN= NC 

Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)

Từ (5)(6)(7) => Đpcm

2 tháng 5 2017

a, xet tam giac ABM va tam giac ACM co

AB = AC ( tam giac ABC can)

goc ABM = goc ACM (tam giac ABC can)

BM = MC ( AM la duong trung tuyen)

suy ra tam giac ABM = tam giac ACM (c.g.c)

b,ta co BM=MC=1/2BC

suy ra BM = 1/2.6=3

ta co AM = AB + BM = 5+3 = 8

2 tháng 5 2017

C và d thì sao