Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì Wii tự vẽ nhé.
1/ Ta có:\(AH⊥MN\) (giả thuyết)
AH là phân giác trong của \(\widehat{A}\)(giả thuyết)
\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)
\(\Rightarrow\Delta MAN\)cân tại A
\(\Rightarrow MH=HN=\frac{MN}{2}\)
\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)
2/ Từ B kẽ BK // CN
\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)
Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)
\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)
\(\Rightarrow\Delta MBK\) cân tại B
\(\Rightarrow BM=BK\left(1\right)\)
Xét \(\Delta BKD\)và \(\Delta CND\)có
\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)
\(BD=DC\)(gt)
\(\widehat{BDK}=\widehat{CDN}\)
\(\Rightarrow\Delta BKD=\Delta CND\)
\(\Rightarrow BK=CN\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BM=CN\)
3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)
\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)
\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)
Xét \(\Delta FMN\)và \(\Delta MAI\)có
\(FM=MA\)(gt)
\(\widehat{FMN}=\widehat{MAI}\)(theo 3)
\(MN=AI\)
\(\Rightarrow\Delta FMN=\Delta MAI\)
a) Xét tam giác ABI và tam giác ACI có: AB=AC
AI là cạnh chung
BI=IC
=>tam giác ABI=tam giác ACI( c.c.c)
=>góc ABI=góc ACI
b) Ta có: MBA+ABI=180o ; ACI+ACN=180o
Mà ABI=ACI
=>MBA=ACN
Xét tam giác AGM và tam giác ACN có:
AB=AC
BM=CN
MBA=ACN
=> tam giác AGM= tam giác ACN (c.g.c)
=>AM=AN( 2 cạnh tương ứng)
Hình tự vẽ
a) Ta có :
AG = GD . Mà GM = \(\frac{1}{2}\) AG
=> GD = \(\frac{1}{2}\) AG
Do AG = \(\frac{1}{3}\) AM
=> GD = \(\frac{2}{3}\) AM (*)
Xét tứ giác GBDC ta có:
BM = MC ( gt ) (1)
GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)
Từ (1)(2) => Tứ giác GBDC là hình bình hành
=> GC// và =BD ; BG // và =DC
Xét tam giác ABD ta có:
AP = P B ( gt ) ( 3)
AG = GD ( gt ) (4)
Từ (3)(4) => PG là đường trung bình của tam giác ABD
=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC
Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)
Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )
=> NG=\(\frac{2}{3}\)BN (***)
Từ (*)(**)(***) => Đpcm
b) Xét tam giác DBA ta có :
AG = GD ( gt )
BF=FD ( gt )
=> GF là đường trung bình bình của tam giác DAB
=> GF = \(\frac{1}{2}\)AB( 5)
Ta có : DC = GB ( cm ở câu a )
Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)
=> EN = BG => EN= DC
Mà BG// DC ( cm ở câu a)
=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )
=> DE=NC
Mà NC =\(\frac{1}{2}\)AC (6)
=> AN= NC
Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)
Từ (5)(6)(7) => Đpcm
a, xet tam giac ABM va tam giac ACM co
AB = AC ( tam giac ABC can)
goc ABM = goc ACM (tam giac ABC can)
BM = MC ( AM la duong trung tuyen)
suy ra tam giac ABM = tam giac ACM (c.g.c)
b,ta co BM=MC=1/2BC
suy ra BM = 1/2.6=3
ta co AM = AB + BM = 5+3 = 8