Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
. M A B C N 1 1 1 2 2 2 2 3 3 1
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
\(\widehat{A}_1=\widehat{A}_2\)
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>\(\widehat{M}_2=\widehat{N}_2\)(1)
Xét tam giác CNM có NC<MC
=>\(\widehat{M}_3< \widehat{N}_3\)(2)
Từ (1),(2)
=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)
=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)
=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho ˆA1=ˆA2A^1=A^2và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
ˆA1=ˆA2A^1=A^2
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>ˆM1=ˆANCM^1=ANC^;BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>ˆM2=ˆN2M^2=N^2(1)
Xét tam giác CNM có NC<MC
=>ˆM3<ˆN3M^3<N^3(2)
Từ (1),(2)
=>ˆM2+ˆM3<ˆN2+ˆN3M^2+M^3<N^2+N^3
=>ˆAMC<ˆANCAMC^<ANC^=>ˆANC>ˆAMCANC^>AMC^
=>ˆAMB>ˆAMCAMB^>AMC^(ˆANC=ˆAMBANC^=AMB^)
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:
\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\) => ABE=ACF
=> 180-ABE=180-ACF =>ABG=HCA
Xét tam giác AGB và tam giác HAC có:
AB=HC (gt)
ABG=HCA (CMT)
GB=AC (gt)
=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)
=>AG=HA (hai góc tương ứng ) => Tam giác AGH cân tại A (1)
=> GAB=AHC (hai góc tương ứng)
Xét tam giác AFH vuông tại F có :
FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )
=> FAH+GAB=90 (vì GAB=AHC cmt)
=>GAH=90 (2) Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)
b) 1)Theo a, có: Tam giác AGB= Tam giác HAC
=> AG=HA ( hai cạnh tương ứng)
=> Tam giác AGH cân tại A
Mà M là trung điểm của GH => AM là trung tuyến đồng thời là đường cao
=> AM vuông góc với GH
=> AMN=90 =>Tam giác MIN vuông tại M
=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)
=>MNI=180-90-MIN=90-MIN (1)
Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I
Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này
=> AKN=90 => Tam giác AKI vuông tại K
=> IAK+AKI+AIK=180
=>IAK=180-90-AIK=90-AIK (2)
Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK
Mà MIN và AIK đối đỉnh => MNI=IAK =>BNG=OAM (ĐPCM)
2) Ta có AB < AC mà AC = BG
=> AB < BG
=>AGB < GAB mà AGB = HAC (câu a)
=>HAC < GAB (1)
Tam giác AGH cân tại A, đường trung tuyến AM
=> GAM = HAM (2).
Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)