Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải tiếp =>góc BAM=góc CAM (2 cạnh tương ứng) =>AM là tia phân giác của góc A
câu b là Vẽ BK vuông góc với AD sao cho K thuộc AD, CF vuông góc với AE sao cho CF thuộc AE nhé các bạn
A B C D E I K M T
gọi giao của BK và CI là T
ta có : Ab=AC=>tam giác ABC cân tại A
=> góc ABC= góc ACB
ABD=180o-ABC
ACE=180o-ACB
=> góc ABD= góc ACE
xét tam giác ABD và tam giác ACE có:
BD=CE(gt)
góc ABD=góc ACE
AB=AC(gt)
=> tam giác ABD=tam giác ACE(c.g.c)
=> AK=AE=> tam giác AKE cân tại A
MB=MC
BD=CE
MD=MB+BD
ME=MC+CE
=> MD=ME
tam giác AKE cân tại A có AM là đường trung tuyến=> AM đồng thời là phân giác góc KAE(1)
xét 2 tam giác vuông KBD và ICE có:
góc D= góc E(tam giác AKE cân tại A)
DB=EC(gt)
=>tam giác KBD=tam giác ICE(CH-GN)
=>KD=IE
AD=AE
AK=AD-DK
AI=AE-IE
=> AK=AI
xét 2 tam giác vuông AKB và tam giác AIC có:
AK=AI(cmt)
AB=AC(gt)
=>tam giác AKB=tam giác AIC(CH-CGV)
=> AT là tia phân giác góc KAE(2)
từ (1)(2)=> AI trùng AM=> A,M,T thẳng hàng
=> AM,BK,CT đồng quy tại T
Hình bạn tự vẽ nhé
a) Xét ΔABM và ΔACM có:
AB=AC (gt)
AM là cạnh chung
BM=CN (M là trung điểm của BC)
=> ΔABM=ΔACM (c-c-c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)
=> \(\widehat{AMB}+\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM vuông góc với BC
b) Theo câu a ta có: ΔABM=ΔACMB
=> \(\widehat{ABM}=\widehat{ACM}\)
Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB=AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)
BD=CE (gt)
=> ΔABD=ΔACE (c-g-c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
Cũng theo câu a thì ΔABM=ΔACM
=> \(\widehat{BAM}=\widehat{CAM}\)
=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)
=> \(\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE
a, xét tam giác AMB và tam giác AMC có : AM chung
BM = CM do M là trung điểm của BC (gt)
AB = AC (gt)
=> tam giác AMB = tam giác AMC (c-c-c)
=> góc AMB = góc AMC (đn)
mà góc AMB + góc AMC = 180 (kb)
=> góc AMB = 90
=> AM _|_ BC (đn)
b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc ABC + góc ABD = 180 (kb)
góc ACB + góc ACE = 180 (kb)
=> góc ABD = góc ACE
xét tam giác ABD và tam giác ACE có : BD = CE (gt)
AB = AC (gt)
=> tam giác ABD = tam giác ACE (c-g-c)