Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Theo bài ra ta có :
tam giác ABC cân tại A suy ra
AB=AC mà BD=CE
suy ra AB+BD=AC+CE
suy ra AD=AE
suy ra tam giác ADE cân tại A
ta lại có : tam giác ABC cân tại A (gt)
suy ra : góc B=C=D=E
từ góc B=D suy ra DE//BC ( 2 góc đồng vị bằng nhau )
b/ theo bài ra ta có :
tam giác ABC cân tại A suy ra B=C
ma B=MBD(đối đỉnh)
C=NCE(đối đỉnh)
suy ra : MBD=NCE
XÉT tam giác MBD va tam giác NCE có:
BMD=CNE=90(gt)
BD=CE(gt)
MBD=NCE(c/m trên)
suy ra :tam giác MBD=tam giác NCE(cạnh huyền-góc nhọn)
suy ra: DN=EN(2 cạnh tương ứng)
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
bạn ơi câu này phải là trên tia đối của BA và CA lấy 2 điểm D và E sao cho BD=CE
a) Vì ∆ABC cân tại A
=> ABC = \(\frac{180°-BAC}{2}\)
Vì ∆ABC cân tại A
=> AB = AC
Mà BD = CE
=> AB + BD = AC + CE
Hay AD = AE
=> ∆ADE cân tại A
=> ADE = \(\frac{180°-BAC}{2}\)
=> ADE = ABC
Mà 2 góc này ở vị trí đồng vị
=> BC //DE
b) Vì BC //DE
=> BCED là hình thang
Vì ∆ADE cân tại A=> ADE = AED
=> BCED là hình thang cân
=> BD = CE
=> BDE = CED
Vì BC //DE
=> MN//DE
=> NMD = MDE = 90°
=> MNE = NED = 90°
=> MDE = NED
Mà MDE = MDB + BDE
NED = NEC + CED=
=> NEC = MDB
Xét ∆ vuông BMD và ∆ vuông CNE ta có :
BD = CE
NEC = MDB (cmt)
=> ∆BMD = ∆CNE ( cgv-gn)
c) Ta thấy ADB là góc ngoài ∆ABC tại đỉnh B
=> BAC + ABC = AMB
Ta thấy : ANC là góc ngoài ∆ABC tại đỉnh C
=> BAC + ACB = ANC
Mà ABC = ACB ( ∆ABC cân tại A)
=> AMB = ANC
=> ∆AMN cân tại A
a: Xét ΔABC có AB/BD=AC/CE
nên BC//DE
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE
góc DBM=góc ECN
=>ΔDBM=ΔECN
=>DM=EN và BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
A B C E D M N
a) Xét \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC,\widehat{ABC}=\widehat{ACB}\) và \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\)
Ta có: BD = CD (gt)
Nên AD = AE hay \(\Delta ADE\) cân tại A
\(\Rightarrow\widehat{ADE}=\dfrac{180^o-\widehat{A}}{2}\)
Do đó \(\widehat{ABC}=\widehat{ADE}\)
Mà 2 góc này ở vị trí đồng vị
Vậy DE // BC
b) Ta có: \(\widehat{MBD}=\widehat{ABC},\widehat{NCE}=\widehat{ACB}\) (đối đỉnh)
Nên \(\widehat{MBD}=\widehat{NCE}\)
Xét \(\Delta BMD\) và \(\Delta CNE\), có:
\(\widehat{BMD}=\widehat{CNE}\left(=90^o\right)\)
BD = CE (gt)
\(\widehat{MBD}=\widehat{NCE}\left(cmt\right)\)
Suy ra \(\Delta BMD=\Delta CNE\left(ch-gn\right)\)
\(\Rightarrow DM=EN\) (2 cạnh t/ư) (đpcm)
c) Theo cm câu b: \(\Delta BMD=\Delta CNE\)
=> MB = NC (2 cạnh t/ư)
Xét \(\Delta AMB\) và \(\Delta ANC\), có:
AB = AC (cm a)
\(\widehat{ABM}=\widehat{ACN}\) (cũng bù với 2 góc bằng nhau)
MB = NC (cmt)
Nên \(\Delta AMB\) = \(\Delta ANC\) (c.g.c)
=> AM = AN
Vậy \(\Delta AMN\) cân tại A
Lười chép, chữ xấu, thông cảm.