Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: AE+BE=AB
AF+FC=AC
mà AB=AC
và BE=FC
nên AE=AF
hay ΔAEF cân tại A
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
=>\(\widehat{AEF}=\widehat{ABC}=\widehat{ACB}\)
- Xét tg ABC và AFE có :
AB=AF(gt)
AC=AE(gt)
\(\widehat{FAE}=\widehat{BAC}\left(đđ\right)\)
=> Tg ABC=AFE(c.g.c)
=> EF=BC
Mà : \(BM=\frac{BC}{2}\left(gt\right)\)
\(FN=\frac{FE}{2}\left(gt\right)\)
=> BM=FN
- Xét tg ABM và AFN có :
AB=AF(gt)
BM=FN(cmt)
\(\widehat{B}=\widehat{F}\)(do tg ABC=AFN)
=> Tg ABM=AFN(c.g.c)
#H
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
1.
Xét tam giác BAC và tam giác FAE có:
BA = FA (gt)
BAC = FAE (2 góc đối đỉnh)
AC = AE (gt)
=> Tam giác BAC = Tam giác FAE (c.g.c)
=> BC = FE (2 cạnh tương ứng)
2.
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của CB)
=> Tam giác AMC = Tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng)
Xét tam giác ABC và tam giác DCB có:
AB = DC (tam giác AMB = tam giác DMC)
BC chung
AC = DB (chứng minh trên)
=> Tam giác ABC = Tam giác DCB (c.c.c)
a: góc A=180-60=120 dộ
=>góc EAB=60 độ=góc BAI
Xet ΔEAB và ΔIAB có
góc EAB=góc IAB
AB chung
EA=IA
=>ΔEAB=ΔIAB
=>BE=BI
=>AB là trung trực của IE
Chứng minh tương tự, ta được: AC là trung trực của IF
b: góc EAB=góc FAC=60 độ
=>góc EAB+góc BAI=góc FAC+góc IAC
=>góc EAI=góc FAI
Xét ΔEAI và ΔFAI có
AI chung
góc EAI=góc FAI
AE=AF
=>ΔEAI=ΔFAI
=>EI=FI
=>ΔIFE cân tại I
=>góc EIF=2*góc AIE
ΔEAI cân tại A
=>góc AIE=(180-60-60)/2=30 độ
=>góc EIF=60 độ
=>ΔIEF đều
c: góc AIE=góc AIF
=>AI là phân giác của góc EIF
mà ΔEIF đều
nên AI vuông góc EF