K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Qua D, I lần lượt vẽ DM//BC, IN//BC (\(M,N\in BC\)) => DM // IN (quan hệ giữa ba đường thẳng song song)

\(\Delta\)EDM có I là trung điểm của DE và DM // IN nên EN = MN (1)

\(\Delta\)ABC cân tại A có DM //BC nên DB = MC

Kết hợp với AE = DB ( do AD = CE và AB = AC) suy ra AE = MC (2)

Từ (1) và (2) suy ra AN = CN

\(\Delta\)AKC có AN = CN và IN // KC (theo cách vẽ) nên AI = IK

Vậy AI = KI (đpcm)

9 tháng 7 2020

wadsf

27 tháng 10 2022

Kẻ IN//BC; DM//BC

Xét ΔEDM có

I là trung điểm của ED

IN//DM

DO đó: N là trung điểm của ME

Vì DM//BC

nên góc ADM=góc AMD

=>AD=AM

mà AD=EC

nên AM=EC

=>N là trung điểm của AC

Xét ΔAKC có

N là trung điểm của AC

NI//KC

Do đó: I là trung điểm của AK

Xét tứ giác ADKE có

I là trung điểm chung của AK và DE

nên ADKE là hình bình hành

5 tháng 9 2015

Bn có thể vào câu hỏi tương tự mà kham khảo nhiều lắm...

27 tháng 10 2022

Kẻ IN//BC; DM//BC

Xét ΔEDM có

I là trung điểm của ED

IN//DM

DO đó: N là trung điểm của ME

Vì DM//BC

nên góc ADM=góc AMD

=>AD=AM

mà AD=EC

nên AM=EC

=>N là trung điểm của AC

Xét ΔAKC có

N là trung điểm của AC

NI//KC

Do đó: I là trung điểm của AK

Xét tứ giác ADKE có

I là trung điểm chung của AK và DE

nên ADKE là hình bình hành

8 tháng 10 2020

B A C D E K I I' D'

Từ I vẽ đường thẳng II' // BC

Từ D vẽ đường thẳng DD' // BC

=> II' // DD' . Mà I là trung điểm của DE

=> EI' = I'D' ( 1 )

Vì \(\Delta\)ABC cân tại A có DD' // BC => DB = D'C ( 2 )

Mà AD = CE => AE = DB ( 3 )

Từ ( 2 ) và ( 3 ) => D'C = AE ( 4 )

Từ ( 1 ) và ( 4 ) => AI' = 'IC

\(\Delta\)AKC có II' // KC ; AI' = I'C

=>AI = IK ( Đpcm )

9 tháng 9 2017

Giải:

HÌNH TỰ VẼ

Qua \(I\) và \(D\), kẻ IN song song với \(BC;DM\) song song với \(BC\) \(\left(M;N\in AC\right)\)

Do \(\Delta ABC\) cân nên \(\Delta AMD\) cân.

\(\Rightarrow AM=AD\Rightarrow AM=CE\)          \(\left(1\right)\)

Mặt khác \(IN\) song song với \(BC\) nên \(IN\) song song với \(MD\).

Xét \(\Delta EMD\) có \(I\) là trung điểm của \(DE\), \(IN\) song song với \(MD\) nên \(N\) là trung điểm của \(ME\)\(\left(2\right)\)

Từ  \(\left(1\right)\) và \(\left(2\right)\) => \(N\) là trung điểm của \(AC\) .

Xét\(\Delta ACK\)\(N\) là trung điểm của \(AC\). \(NI\) song song với \(CK\) nên \(I\) là trung điểm của \(AK\).\(\left(\text{đ}pcm\right)\)

9 tháng 9 2017

Tham khảo nha: 

Giải:

Qua I và D , kẻ IN song song với BC, DM song song với BC (M,N thuộc AC).

Do △ABC△ABC cân nên △AMD△AMD cân => AM=AD => AM=CE (1)

Mặt khác IN song song với BC nên IN song song với MD.

Xét △EMD△EMD có I là trung điểm của DE , IN song song với MD nên N là trung điểm của ME. (2)

Từ (1) và (2) => N là trung điểm của AC .

Xét △ACK△ACK có N là trung điểm của AC. NI song song vs CK nên I là trung điểm của AK.

(dpcm)

11 tháng 2 2016

vẽ hình sẽ ra ngay , mình ko vẽ được

tich ủng hộ nha

12 tháng 10 2022

nguu còn gáy

27 tháng 10 2022

Kẻ ON//BC; DM//BC

Xét ΔEDM có

O là trung điểm của ED

ON//DM

DO đó: N là trung điểm của ME

Vì DM//BC

nên góc ADM=góc AMD

=>AD=AM

mà AD=EC

nên AM=EC

=>N là trung điểm của AC

Xét ΔAKC có

N là trung điểm của AC

NO//KC

Do đó: O là trung điểm của AK

Xét tứ giác ADKE có

O là trung điểm chung của AK và DE

nên ADKE là hình bình hành

27 tháng 10 2022

Kẻ IN//BC; DM//BC

Xét ΔEDM có

I là trung điểm của ED

IN//DM

DO đó: N là trung điểm của ME

Vì DM//BC

nên góc ADM=góc AMD

=>AD=AM

mà AD=EC

nên AM=EC

=>N là trung điểm của AC

Xét ΔAKC có

N là trung điểm của AC

NI//KC

Do đó: I là trung điểm của AK

Xét tứ giác ADKE có

I là trung điểm chung của AK và DE

nên ADKE là hình bình hành

20 tháng 9 2016

a. M là trung điểm của DE, I là trung điểm của BE 

=> MI là đường trung bình của tam giác EDB 

=>  MN = \(\frac{1}{2}\) DB (1)

CMTT ta có

MK = \(\frac{1}{2}\) EC (2)

KN = \(\frac{1}{2}\) BD (3)

IN = \(\frac{1}{2}\) EC (4)

lại có BD = CE  (5)

từ 1 2 3 4 5 => MI = MK = KN = NI 

=> MINK là hình thoi