K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Bạn xem lại chỗ "CE=BD". 

10 tháng 1 2019

đúng r mà bn

9 tháng 2 2020

A B C I E D F O a, góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABC + góc ABF = 180 (kb)

góc ACB + góc BCE = 190 (kb)

=> góc ABF = góc BCE 

xét tam giác FBD và tam giác ICE có : BF = CI (gt)

BD = CE (gt)

=> tam giác FBD = tam giác ICE (c-g-c)

b, tam giác FBD = tam giác ICE (câu a)

=> góc DFB = góc CIE (đn)

góc CIE = góc DIF (đối đỉnh)

=> góc DFI = góc DIF 

=> tam giác FDI cân tại D (dh)

c, kẻ DO // AC có ODI slt với ICE 

=> góc ODI = góc ICE (đl)      (1)

 tam giác FDI cân tại D (Câu b) => DF = DI 

mà có FD = IE do tam giác FBD = tam giác ICE (câu a) 

=>  DI = IE     (2)

xét tam giác DIO và tam giác EIC có : góc OID = góc CIE (đối đỉnh)    và (1)(2)

=> tam giác DIO = tam giác EIC (g-c-g)

=> DI = IE (đn) mà I nằm giữa D và  E

=> I Là trung điểm của DE (đn)

9 tháng 2 2020

A B C F E I D = = - - + +

a) Ta có:

DBF + DBI = 180o

ICE + ICA = 180o

Mà DBI = ICA \(\Rightarrow\)DBF = ICE

Xét \(\Delta\)BFD và \(\Delta\)CIE có:

DB = CE (gt)

DBF  =ICE (cmt)

BF = CI (gt)

\(\Rightarrow\Delta\) BFD = \(\Delta\)CIE (c.g.c)

b) Vì \(\Delta\)BFD = \(\Delta\)CIE

\(\Rightarrow\)DFB = CIE (2 góc tương ứng)

Mà CIE = DIF (đối đỉnh)

\(\Rightarrow\)DFB = DIF

\(\Rightarrow\)\(\Delta\) DIF cân

c) Ta có: \(\Delta\)DFI cân \(\Rightarrow\)DF = DI

Mà DF = IE \(\Rightarrow\)ID = IE

Lại có 3 điểm 

18 tháng 2 2017

b) Vì 2 tam gics trên = nhau 

\(\Rightarrow\)góc DFB=góc CEI; góc DBF= góc ICE (1)

góc BID= góc CIE ( đồng vị )

Ta có: góc F =  180-\(\widehat{FDB}\)-\(\widehat{DBF}\)

\(\widehat{DIB}\) =180-\(\widehat{CEI}\)-\(\widehat{ICE}\)(2)

Từ 1 và 2 \(\Rightarrow\)\(\widehat{F}\)=\(\widehat{DIB}\)

\(\Rightarrow\)tam giác DFI cân tại D

18 tháng 2 2017

a) Vì tam giác ABC cân tại A 

\(\Rightarrow\)gócB=gócC

Xét tam giác BFD và tam giác CIE

BD=CE

BF=CI

góc DBF=góc ECI

\(\Rightarrow\)2 tam giác đó = nhau