Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(AD=AE\left(gt\right)\)
→ ΔADE là tam giác cân ở A
\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)
Mà ΔABC cũng là tam giác cân
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)
mà 2 góc này ở vị trí so le trong
\(\Rightarrow DE//BC\)
b, Xét ΔABE và ΔACD có :
\(AB=AC\left(\Delta ABC\cdot cân\right)\)
\(\widehat{A}:chung\)
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)
c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.
Mà ΔABC cân ở A
→ AK là đường trung tuyến của tam giác ABC
→ AI cũng là đường trung tuyến của tam giác ABC
a, Xét tam giác ABE và tam giác ACD
AB = AC
AE = AD
^A _ chung
Vậy tam giác ABE = tam giác ACD (c.g.c)
=> BE = CD ( 2 cạnh tương ứng )
=> ^ABE = ^ACD ( 2 góc tương ứng )
b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC
Xét tam giác KBD và tam giác KCE có
^BKD = ^CKE ( đối đỉnh )
^KBD = ^KCE (cmt)
BD = CE (cmt)
Vậy tam giác KBD = tam giác KCE (g.c.g)
c, Xét tam giác ABH và tam giác ACH có
^B = ^C
AH _ chung
AB = AC
Vậy tam giác ABH = tam giác ACH ( c.g.c )
=> ^BAH = ^CAH ( 2 góc tương ứng )
=> AH là đường phân giác
hay AK là đường phân giác
d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao
hay AK vuông BC
e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó:ΔKBD=ΔKCE
a) Xét \(\Delta AEB\) và \(\Delta ADC:\)
AE = AD (gt).
\(\widehat{A}chung.\)
AB = AC \((\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)
\(\Rightarrow BE=CD.\)
b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)
Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)
Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)
\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)
Xét \(\Delta KBD\) và \(\Delta KCE:\)
\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)
BD = CE (cmt).
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)
\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)
c) Xét \(\Delta AKB\) và \(\Delta AKC:\)
\(AKchung.\)
AB = AC (\(\Delta ABC\) cân tại A).
KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)
\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)
Xét \(\Delta ABC\) cân tại A:
AK là phân giác của \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AK là đường cao.
\(\Rightarrow AK\perp BC.\)