K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

bạn tự vẽ hình nha 

a) góc ACB=góc ECN (đối đỉnh)

góc ABC=góc ACB(tam giác ABC cân )

--> góc ABC=góc ECN

xét 2 tam giác BDM và CEN có:

cạnh BD=cạnh EC(gt)
góc BDM=góc CEN(=90độ)

góc MBC=góc ECN(chứng minh trên )

--> 2 tam giác BDM=CEN(g.c.g)

--> DM=EN(2 cạnh tương ứng)

c)xét 2 tam giác AOB và AOC có:

AB=AC(tam giác ABC cân)

góc BAO=góc CAO(tia OA là p.giác của góc A)

cạnh AO chung

--> 2 tam giác AOB=AOC(c.g.c)

3 tháng 8 2016

yon khờ bảo lm giúp phần d mà đỗ thị lan anh 

15 tháng 6 2016

Hình tự túc, vẽ khó quá.

a) ACB^ = ECN^ (đđ)

Mà ACB^ = ABC^ (do \(\Delta\) ABC cân)

=> ABC^ = ECN^ 

Xét \(\Delta\)BDM và \(\Delta\)CEN :

BDM^ = CEN^ = 90o

BD = CE

ABC^ = CEN^ 

=> \(\Delta\)BDM = \(\Delta\)CEN (cạnh góc vuông_ góc nhọn)

=> DM = EN (2 cạnh tương ứng)

b) MD _|_ BC; NE_|_ BC =>   MD // NE 

                                         => DMI^ = ENI^ (sole trong) 

Xét \(\Delta\)DMI và \(\Delta\)ENI:

MDI^ = NEI^ = 90o

MD = EN (cmt)

DMI^ = ENI (cmt)

=> \(\Delta\)DMI và \(\Delta\)ENI (cạnh góc vuông_góc nhọn)

=> IM = IN                                              (1)

Vì I là giao điểm của MN và BC nên I nằm trên MN                          (2)

Từ (1) và (2) => I là trung điểm của MN

c) Xét \(\Delta\)ABO và \(\Delta\)ACO:

AO chung

BAO^ = CAO^ 

AB = AC 

=> \(\Delta\)ABO = \(\Delta\)ACO (c.g.c)

d) ko bt (cần thời gian suy nghĩ, và có thể bí luôn)

  

 

16 tháng 6 2016

Sorry! Bí lun rồi bn ơi, càng nghĩ càng loạn.oho

19 tháng 5 2016

bạn vẽ hình ra đi

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn