Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HINH BN TU VE NHA
a)CÓ AB=AC( GT)
=>TAM GIAC ABC CAN TAI A( DN TAM GIAC CAN)
=> GÓC ABC = GÓC ACB( ĐN TAM GIÁC CÂN)(1)
CÓ BD LÀ TIA PHÂN GIÁC CỦA GÓC B
=>GÓC ABD = GÓC DBC(2)
CÓ CE LÀ TIA PHÂN GIÁC CỦA GÓC ACB
=>GÓC ACE = GÓC ECB(3)
TỪ (1) (2) (3)=>GÓC ABD = GÓC DBC = GÓC ACE = GÓC ECB
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO:
GÓC A CHUNG
AB=AC(GT)
GÓC ABD = GÓC ACE(CMT)
=>TAM GIÁC ABD = TAM GIÁC ACE( G-C-G)
=>AE=AD(2 CẠNH TƯƠNG ỨNG)
=>TAM GIAC AED CAN TAI A( DN TAM GIAC CAN)
b) CÓ TAM GIÁC AED CÂN TẠI A(CM Ở CÂU a)
SUY RA GÓC AED = GÓC ADE( DN TAM GIÁC CÂN)(1)
CÓ GÓC ABC = GÓC ACB( CM Ở CÂU a ) (2)
MÀ 2 TAM GIÁC NÀY ĐỀU CÂN TẠI A
=> GÓC AED = GÓC ABC ( GÓC ADE = GÓC ACB)
MÀ 2 GÓC NÀY NẰM Ở VỊ TRÍ ĐỒNG VỊ
=>DE//BC( DHNB 2 ĐƯỜNG THẲNG //)
CAU c) DE = BE = DC CHU( THEO M NGHI THUI)
NHO KIK CHO M NHA ( ĐÓ LÀ LỜI CẢM ƠN)
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
A B C E D 1 2 2 1
a, \(\Delta\) ABC có AB = AC => \(\Delta\) ABC cân tại A
ta có \(\widehat{B1}=\widehat{B2}=\frac{\widehat{B}}{2}\) ; \(\widehat{C1}=\widehat{C2}=\frac{\widehat{C}}{2}\)
mà \(\widehat{B}=\widehat{C}\) ( \(\Delta\) ABC cân tại A )
=> \(\widehat{B1}=\widehat{B2}=\widehat{C1}=\widehat{C2}\)
xét \(\Delta\) EBC và \(\Delta\) DCB có
BC chung
\(\widehat{B}=\widehat{C}\) ( \(\Delta\) ABC cân tại A )
\(\widehat{B2}=\widehat{C2}\) (cmt )
=> \(\Delta\) EBC = \(\Delta\) DCB ( g.c.g )
ta có AE + EB = AB
AD + DC = AC
mà EB = DC ( \(\Delta\) EBC = \(\Delta\) DCB ) ; AB = AC
=> AE = AD =>\(\Delta\) AED cân tại A
b, ta có \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)
\(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)
=> \(\widehat{D}=\widehat{C}\) mà 2 góc này ở vị trí đồng vị
=> DE // BC
c,DE // BC , \(\widehat{DEC}và\widehat{ECB}\) so le trong
=> \(\widehat{DEC}=\widehat{C2}\) mà \(\widehat{C2}=\widehat{C1}\)
=> \(\widehat{DEC}=\widehat{C1}\) => \(\Delta\) DEC cân tại D
=> DE = DC
ta có BE = DC ( \(\Delta\) EBC = \(\Delta\) DCB )
=> DE = BE = DC
a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^
b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE
△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450
△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.
Chứng minh tương tự có △AMB vuông cân tại M.
c, Gọi F là giao điểm của BE và AK.
△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK
Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)
△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900
⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)
Từ (1) và (2) ⇒HK=CK
a, Ta có: góc ABE = góc EBC = góc ABC/2
góc ACD = góc DCB = góc ACB/2
mà góc ABC = góc ACB (tg ABC cân tại A)
=> góc ABE = góc EBC = góc ACD = góc DCB
Xét tg ABE và tg ACD có:
góc A chung
AB = AC (tg ABC cân tại A)
góc ABE = góc ACD (cmt)
=>tg ABE = tg ACD (g.c.g)
=> AE=AD
=>tg AED cân tại A
b, Xét tg ABC cân tại A có: góc ABC = góc ACB = (180 độ - góc A)/2
Xét tg AED cân tại A có: góc ADE = góc AED =(180 độ - góc A)/2
=> góc ABC = góc ADE
Mà 2 góc này ở vị trí đồng vị
=>DE//BC
c, DE//BC => góc BED = góc EBC (slt) ; góc CDE = góc DCB (slt)
=> góc BED = góc DBE (góc DBE = góc EBC)
=> tg BDE cân tại D => BE = ED (1)
DE//BC => góc CDE = góc DCB (slt)
=> góc CDE = góc DCE (góc DCE = góc DCB)
=> tg DEC cân tại E => ED = DC (2)
Từ (1),(2)=>đpcm
Hình vẽ:
A B C E F 1 2 1 1 2
\(\widehat{B_2}=\frac{180^0-\widehat{A}}{4};\widehat{C_2}=\frac{180^0-\widehat{A}}{4}\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\Delta BCE=\Delta CBD\left(g.c.g\right)\)
\(\Rightarrow\widehat{B}=\widehat{C}\)( tính chất tam giác cân )
BC là cạnh chung
\(\widehat{C_2}=\widehat{B_2}\left(cmt\right)\)
\(\Rightarrow BE=DC\)( 2 cạnh tương ứng )
\(AB=AC\)( tam giác ABC cân tại A )
\(AE=AB-BE,AD=AC-DC\)
\(\Rightarrow AE=AD\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\widehat{E_1}=\frac{180^0-\widehat{A}}{2};\widehat{B}=\frac{180^0-\widehat{A}}{2}\)
\(\Rightarrow\widehat{E_1}=\widehat{B}\)( 2 góc đồng vị )
\(\Rightarrow ED//BC\)
\(\Rightarrow\widehat{B_2}=\widehat{EDB}\left(slt\right)\)
mà \(\widehat{B_1}=\widehat{B_2}\)( vì BD là tia phân giác )
\(\Rightarrow\widehat{B_1}=\widehat{EDB}\)
\(\Rightarrow\Delta EBD\)cân tại E, ta có:
\(BE=ED\)
mà \(BE=DC\)
\(\Rightarrow BE=ED=DC\)