K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))

AH chung

Do đó: ΔABH=ΔACH(c-g-c)

Suy ra: HB=HC(hai cạnh tương ứng)

25 tháng 2 2021

a/ Trong tam giác ABC cân tại A có: AH là tia phân giác (1)

=> AH cũng là đường trung tuyến

=> H là trung điểm BC => HB=HC

b/ Từ (1) => AH cũng là đường cao

=> AH \(\perp\) BC

c/ Ta có: H là trung điểm BC

=> HB=HC=\(\dfrac{1}{2}\) BC

mà BC=8(cm)

=> HB=BC=8:2=4(cm)

Dựa vào định lý Pytago

=> BH2+AH2=AB2

=> AH2=AB2-BH2

AH2= 52-42

AH2=25-16=9

=> AH=\(\sqrt{9}\) =3(cm)

a) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))

AH chung

Do đó: ΔABH=ΔACH(c-g-c)

Suy ra: HB=HC(Hai cạnh tương ứng)

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

a: ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH vừa là đường cao vừa là đừog trung tuyến

b: Vì H là trung điểm của BC

nên BH=CH=4cm

\(AH=\sqrt{AB^2-AH^2}=2\sqrt{21}\left(cm\right)\)

c: Xét ΔBIC có 

IH là đường cao

IH là đường trung tuyến

Do đó:ΔBIC cân tại I

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBM có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBM cân tại C

c: N ở đâu vậy bạn?

a, \(\Delta\) HBA và \(\Delta\) ABC:

^B - chung

^H = ^A= 900 => tg HBA đồng dạng ABC.

b, Vì tam giác BHA đồng dạng tg ABC:

=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)

c, ADTC tia phân giác:

\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)

ADTC dãy tỉ số bằng nhau 

\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)

\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)

a: XétΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=BC/2=18(cm)

nên AH=24(cm)