Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M 1 2
a) Xét tam giác AMB và AMC có:
AM chung
AB=AC (tam giác ABC cân tại A)
\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)
b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC
Vì trong tam giác cân đường trung tuyến trùng với đường cao
=> AM là đường cao tam giác ABC
=> AM _|_ BC (đpcm)
Bài làm
a) Xét tam giác AMB và tam giác AMC có:
^MAB = ^MAC ( Do AM phân giác )
AB = AC ( Do ∆ABC cân )
^B = ^C ( Do ∆ABC cân )
=> ∆AMB = ∆AMC ( g.c.g )
b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )
=> ^AMB = ^AMC
Mà ^AMB + ^AMC = 180° ( hai góc kề bù )
=> ^AMB = ^AMC = 180°/2 = 90°
=. AM vuông góc với BC.
Cách 2: Vì tam giác ABC cân tại A
Mà AM là tia phân giác
=> AM đồng thời là đường cao.
=> AM vuông góc với BC .
c) Vì ∆ABC cân tại A
Mà AM vừa là đường phân giác, vừa là đường cao.
=> AM là đường trung tuyến.
=> BM = MC
Mà BM + MC = BC = 6
=> BM = MC = 6/2 = 3 ( cm )
Xét tam giác AMB vuông tại M có:
Theo định lí Pytago có:
AB² = AM² + BM²
=> AM² = AB² - BM²
Hay AM² = 5² - 3²
=> AM² = 25 - 9
=> AM² = 16
=> AM = 4 ( cm )
d) Xét tam giác ABC có:
AM vuông góc với BC
AH vuông góc với AC
Mà AM cắt AH tại H
=> H là trực tâm.
=> CH vuông góc với AB . ( Đpcm )
a)Xét tam giác AMB và tam giác AMC
ta có: góc AMB=góc AMC (AM là tia phân giác)
AM là cạnh chung góc B=gócC
Vậy tam giác AMB=tam giácAMC(G-C-G)
A 1 2 B C M H I K 2 1
Cm: a) Xét t/giác AMB và t/giác AMC
có góc A1 = góc A2 (gt)
AB = AC (gt)
góc B = góc C (Vì t/giác ABC cân tại A)
=> t/giác AMB = t/giác AMC (g.c.g)
b) Ta có: t/giác AMB = t/giác AMC (cmt)
=> góc M1 = góc M2 (hai góc tương ứng) ( Đpcm)
Mà góc M1 + góc M2 = 1800 (kề bù)
hay 2.góc M1 = 1800
=> góc M1 = 1800 : 2
=> góc M1 = 900
=> AM \(\perp\)BC( Đpcm)
c) Ta có: t/giác AMB = t/giác AMC (cmt)
=> BM = MC = BC/2 = 6/2 = 3 (cm)
Xét t/giác ABM vuông tại M (áp dụng đính lý Pi - ta - go)
Ta có: AB2 = AM2 + MB2
=> AM2 = AB2 - MB2 = 52 - 32 = 25 - 9 = 16
=> AM = 4
d) Gọi I là giao điểm của BH và AC; K là giao điểm của CH và AB
còn lại tự làm
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) mà \(\widehat{B}=50\)độ \(\Rightarrow\widehat{C}=50\)độ
ADTC tổng 3 góc trong 1 tam giác suy ra góc A = 180 - 2 lần góc B = 180- 2*50=80
b) Xét tam giác AMB và tam giác AMC có
M1=M2=90độ (vì vuông góc), AC=AB( vì tam giác ABC cân) , góc C = góc B( vì tam giác ABC cân)
suy ra tam giác AMB = tam giác AMC(ch-gn)
c) từ b suy ra MB=MC ( 2 cạnh t/ứng )
Xét tam giac IMB và tam giac IMC có
IM chung
M1=M2( vì AM vuông góc BC)
MB=MC ( chứng minh trên)
suy ra tam giác IMB = tam giác IMC (c-g-c)
suy ra góc ICM = góc IBM( 2 góc tương ứng )
suy ra tam giác IBC là tam giác cân tại I
d)( tự làm nhé)
mình cần bạn nào giúp mình làm cấu d
còn những cấu trên biết làm rồi
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.