K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

A B C M E F

c, xét tg AEB và tg AFC có : AB = AC do tg ABC cân tại A (Gt)

^ABC = ^ACB do tg ABC cân tại A (gt)

CF = BE (gt)

=> tg AEB = tg AFC (c-g-c)                                         (1)

a, (1) => AF = AE

xét tg AFM và tg AEM có : AM chung

FM = ME do CM = BM; CF  = BE 

=> tg AFM = tg AEM (c-c-c)

b, tg AFM = tg AEM (Câu b)

=> ^AMF = ^AME 

mà ^AMF + ^AME = 180 (kề bù)

=> ^AME = 90

=> AM _|_ BC

d, có M là trđ tính đc MB

dùng pytago

23 tháng 7 2020

A B C M E F 1 2 1 2 2 1 1 2 3 4

GT : \(\Delta\)ABC cân tại A ; BM = CM = 1/2 BC; lấy \(E\in BM;F\in MC\)sao cho BE = CF 

KL :a)  \(\Delta\)AEM = \(\Delta\) AFM

b) \(AM\perp BC\)

c)  \(\Delta AEB=\Delta AFC\)

d) AB = 10 ; BC = 12 => AM = ... cm 

Bài làm

a) Ta có : BM = MC (gt)

BE = FC (gt)

=> BM - BE = MC - FC 

=> ME = MF

Xét tam giác ABM và tam giác ACM có 

+) BM = CM

+) AM chung               => \(\Delta ABM=\Delta ACM\)(C.C.C)

+) AB = AC                  => Góc M1 = Góc M2 (góc tương ứng)

                                         AE = AF(cạnh tương ứng)

Xét tam giác AEM và tam giác AFM có 

+) góc M1 = góc M2

+) AM chung                             => \(\Delta AEM=\Delta AFM\) (c.g.c)

+) ME = MF                               => Góc E2 = Góc F1

 b) Vì Góc M1 = Góc M2 (cmt)

mà Góc M1 + Góc M2 = 180o

=> Góc M1 = Góc M2 = 90o 

=> \(AM\perp BC\)

c) Vì Góc E2 = Góc F1 (câu a)

mà Góc E1 + Góc E2 = Góc F1 + Góc F2 (= 180o)

=> Góc E1 = Góc F2

Xét tam giác AEB và tam giác AFC có : 

+) BE = FC (gt)

+) Góc E1 = Góc F2 (cmt) => \(\Delta AEB=\Delta AFC\)(c.g.c)

+) AE = AF (câu a)

d) Vì Góc M1 = Góc M2 = 90o (câu b)

=> \(\Delta AMB\)vuông tại M

=> \(BM^2+AM^2=AB^2\)(ĐỊNH LÝ PYTAGO) (1)

Lại có BM = MC = 1/2 BC (gt)

=> BM = MC = 1/2 . 12 = 6 cm

Khi đó (1) <=> 62 + AM2 = 102

=> AM2 = 64

=> AM = 8 cm

23 tháng 7 2020

Chương II : Tam giácChương II : Tam giác

a) Ta có: BE+EM=BM(E nằm giữa B và M)

CF+FM=CM(F nằm giữa C và M)

mà BM=CM(M là trung điểm của BC)

và BE=CF(gt)

nên EM=FM

Xét ΔABE và ΔACF có

AB=AC(ΔABC cân tại A)

\(\widehat{ABE}=\widehat{ACF}\)(hai góc ở đáy của ΔABC cân tại A)

BE=CF(gt)

Do đó: ΔABE=ΔACF(c-g-c)

⇒AE=AF(hai cạnh tương ứng)

Xét ΔAEM và ΔAFM có

AE=AF(cmt)

AM chung

EM=FM(cmt)

Do đó: ΔAEM=ΔAFM(c-c-c)

b) Xét ΔABM và ΔACM có

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

\(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)

hay AM⊥BC

c) Xét ΔABE và ΔACF có

AB=AC(ΔABC cân tại A)

\(\widehat{ABE}=\widehat{ACF}\)(hai góc ở đáy của ΔABC cân tại A)

BE=CF(gt)

Do đó: ΔABE=ΔACF(c-g-c)

d) Ta có: BM+CM=BC(M nằm giữa B và C)

mà BM=CM(M là trung điểm của BC)

nên \(BM=CM=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2=10^2-6^2=64\)

hay \(AM=\sqrt{64}=8cm\)

Vậy: AM=8cm

13 tháng 4 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

3 tháng 5 2021

Thiếu câu d nha bn

Cho tam giác ABC cân tại A , có M là chung điểm của BC

a) CM :Tam Giác ABM = Tam giác ACM

b)Từ M kẻ ME vuông góc AB ;MF vuông góc AC (E thuộc AB ,F thuộc AC) .CM Tam giác AEM =Tam giác AFM

c)CM AM vuông góc EF

d) Trên tia MF lấy điểm I sao cho IM =FM . CM EI // AM

Giúp minh với ! minh h cho

23 tháng 4 2018

a)Xét tgiac ABM và tgiac ACM,ta cí:

AB=AC(vì tgiac ABC cân tại A)

MC=MB(giả thiết)

AM là cạnh chung

=>tgiac ABM = tgiac ACM(c.c.c)

12 tháng 5 2017

a) Xét tam giác ABM va tam giác ACM

             Ta có: AB=AC(gt)

              Góc B= góc C(gt)

               MB=MC(Vì M là trung điểm của BC)

      Vậy tam giác ABM=tam giác ACM(c.g.c)

b) Xét  tam giác EBM và tam giác ECM

            Ta có: góc BEM = góc CFM=90 độ

                      góc B =góc C(gt)

                      BM=CM(gt)

         Vậy tam giác EBM= tam giác ECM(ch-gn ) 

=>BE=CE (2 cạnh tương ứng)

Ta có AE=AB-EB

         AF=AC-FC

  Mà AB=AC

       EB=FC(cmt)

=>AE=AF

    Xét tam giác AEM và tam giác AFM

      AE=AF(cmt)

góc AEM= góc AFM=900

     AM:Cạnh chung

Vây tam giác AEM= tam giác AFM(ch-cgv)

c) Gọi {T}=AM giao nhau với EF

Xét tam giác AET và tam giác AFT

          AE=AF(cmt)

        góc EAT= góc AFT( vì tam giác AEM=tam giác AFM) 
        AT: cạnh chung 

Vậy tam giác AET =tam giác AFT (c.g.c)  

=>góc ATE = góc AFT(2 góc tương ứng)

mà góc ATE + góc AFT= 1800

=> GÓC ATE =GÓC AFT= 900

Vậy AM vuông góc với EF

NẾU ĐÚG THÌ CHO MÌNH NHA 

             

                            

3 tháng 5 2021

Thiếu câu d

 

A B C E F M D N

a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\) 

Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :

^AFC = ^AEB = 900\(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)

b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900

Xét \(\Delta AED\) và  \(\Delta AFD\) có : ^AFD = ^AED = 90( cmt ) ; \(AF=AE\left(cmt\right);AD\)  chung

\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )

c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và  \(\Delta AFN\) có :

\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD );  \(AN\) chung. 

\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE =  ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )

=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE

Nên N thuộc AM  \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)

Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau

LOGIC ? 

Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !

Ý thức ko mua đc ''='' tiền.

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

1 tháng 2 2019

tu ve hinh :

a; b, xet tamgiac AMF va tamgiac AME co : AM chung

goc AFM = goc AEM = 90 do MF | AC va ME | AB (gt)

goc FAM = goc EAM do AM la phan giac cua goc BAC (gt)

=> tamgiac AMF = tamgiac AME (ch - gn)               

=> AE = AF (dn)             (1)

AB = AC do tamgiac ABC can tai A (gt)

AE + EB = AB

AF + FC = AC

=> EB = FC 

xet tamgiac BEM va tamgiac CFM co : goc B = goc C do tamgiac ABC can tai A (gt) 

goc MEB = goc MFC do ...

=>  tamgiac BEM = tamgiac CFM  (cgv - gnk)

=> MB = MC

c, (1) => tamgiac AEF can tai E (dn)

=> goc AEF = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc B = (180 - goc BAC) : 2

=> goc AEF = goc B ma 2 goc nay dong vi 

=> EF // BC (dh)

1 tháng 2 2019

                          Giải

Bạn tự vẽ hình

a; b, Xét \(\Delta AMF\) va \(\Delta AME\) có : AM chung

\(\widehat{AFM}=\widehat{AEM}=90^0\)  do MF\(\perp\)AC va ME\(\perp\)AB 

\(\widehat{FAM}=\widehat{EAM}\)do AM la phân giác của  \(\widehat{BAC}\)

\(\Rightarrow\Delta AFM=\Delta AME\)             

\(\Rightarrow AE=AF\)          (1)

AB = AC do \(\Delta ABC\) cân tại A 

AE + EB = AB

AF + FC = AC

\(\Rightarrow\) EB = FC 

Xét \(\Delta BEM\) và \(\Delta CFM\) có : \(\widehat{B}\)\(\widehat{C}\) do \(\Delta ABC\) cân tại A 

\(\Rightarrow\widehat{MEB}=\widehat{MFC}\)

\(\Rightarrow\Delta BEM=\Delta CFM\)

\(\Rightarrow\) MB = MC

c, Từ (1) suy ra \(\Delta AEF\)cân tại E

\(\Rightarrow\widehat{AEF}=\left(180-\widehat{BAC}\right)\div2\)

\(\Delta ABC\) cân tại A  \(\Rightarrow\)\(\widehat{B}\)= (180 - \(\widehat{BAC}\)) : 2

\(\Rightarrow\widehat{AEF}=\widehat{B}\) mà hai góc này đồng vị

\(\Rightarrow EF//BC\)