Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tính chất tam giác cân => góc ABC= gócACB
=> góc ABM= góc ACM
b)Xét tam giác BHM và tam giác CKM có:
góc B= góc C
Góc BHM= góc CKM = 90 độ
MB=MC
=> tam giác BHM đồng dạng tam giác CKM (cạnh huyền, góc nhọn)
=>BH=CK (2canh tương ứng)
c)Xét tam giác BPC có góc P =90 độ, góc PCB = góc KCM = góc HBM(cmt)
=> góc PBC= góc IMB
=> góc IBM= góc IMB
=> tam giác IMB cân tại I
A B C K P H I M
c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK
vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)
nên => góc PMC = góc KMC(đồng vị)
vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)
nên tam giác BIM cân tại I
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét \(\Delta AMB\) và \(\Delta MAC\)CÓ
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung
Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I
a. Xét tam giác ABM và tam giác ACM có :
AB = AC ( vì tam giác ABC cân tại A )
AM chung
BM = MC ( vì M là trung điểm của BC)
=> tam giác ABM= tam giác ACM ( c-c-c)
b. Xét tam giác BHM và tam giác CKM ta có :
BM = MC (gt)
Góc BHM = góc CKM ( = 90 độ )
Góc B = Góc C ( vì tam giác ABC cân tại A)
=> tam giác BHM = tam giác CKM ( ch-gn)
=> BH = CK ( hai cạnh tương ứng)
a, Xét Δ ABM và Δ ACM, có :
AB = AC (Δ ABC cân tại A)
MB = MC (M là trung điểm BC)
\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)
=> Δ ABM = Δ ACM (c.g.c)
b, Xét Δ MHB và Δ MKC, có :
\(\widehat{MHB}=\widehat{MKC}=90^o\)
\(\widehat{HBM}=\widehat{KCM}\) (cmt)
\(\widehat{HMB}=\widehat{KMC}\) (đối đỉnh)
=> Δ MHB = Δ MKC (g.g.g)
=> BH = CK