K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Ta có: AM = MB = AB

AN +NC = AC

Mà AM = AN ( gt ), AB = AC ( ∆ABC cân )

=> BM = CN .

b) Xét tam giác ABN và tam giác ACM có:

AB = AC ( ∆ABC cân )

^A chung

AM = AN ( gt )

=> ∆ABN = ∆ACM ( c.g.c )

c) Vì ∆ABN = ∆ACM ( cmt )

=> ^ABN = ^ACM ( hai góc tương ứng ).

=> ^AMC = ^ANB

Ta có: ^AMC + ^BMC = 180°. ( Kề bù )

  ^ANB + ^BNC = 180° ( kề bù )

Mà ^AMC = ^ANB ( cmt )

=> ^BMC = ^CNB 

Xét tam giác MIB và tam giác NIC có:

^BMC = ^CNB ( cmt )

BM = NC ( cmt )

^ABN = ^ACM ( cmt )

=> ∆MIB = ∆NIC ( g.c.g )

=> BI = IC ( hai cạnh tương ứng )

=> ∆BIC cân tại I

5 tháng 3 2020

Cho mình ghép phần a và b lại nhé ;)))

Xét tam giác ABN và tam giác ACM, ta có:

AB=AC(tam giác ABC cân)

AM=AN(gt)

\(\widehat{A}\):góc chung

Suy ra \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=>BM=CN(2 góc tương ứng)

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

9 tháng 1 2016

Gọi giao điểm của AI và BC là K

Chứng minh tam giác BIC cân=> IB=IC

tam giác BAI= TG CAI=> Ai là pg của góc A

TG BAI=TG CAI=> góc BIA=góc CIA mà hai góc đó kề bù=> góc BAI vuông <=> AI vuông góc với BC

9 tháng 1 2016

Nguyễn Quang Thành tự mà vẽ ko ai rảnh

còn ko bít làm thì thui

8 tháng 4 2015

a.xét tam giác BAN và tam giác CAM ta có:
AM=AN (GT)
AB=AC ( tam giác ABC cân tại A)
A là góc chung
suy ra tam giác BÀN= tam giác CẤM (c.g.c)

b. xét tam giác OBM và tam giác OCN ta có:
góc OBM=góc OCN (2 góc tương ứng)
BM=CN (AB=AC mà AM=AN)
Góc OMB= góc ONC (góc ANB= góc AMC mà AMC+OMB=ANB+ONC)
suy ra tam giác OMB= ta giác ONC (g.c.g)

c.xét tam giác AMO và tam giác ANO ta có:
AM=AN(GT)
góc AMO= góc ANO ( tam giác AMC= tam giác ANB)
OM=ON (tam giác MOB= tam giác NOC)
suy ra tam giác AMO=tam giác ANO (c.g.c)
suy ra góc BAO= góc CAO (2 góc tương ứng). suy ra Ao là p/g của góc A


gọi giao điểm của BC và AO là I.
Xét tam giác ABI và tam giác ACI ta có:
AB=AC (tam giác ABC cân tại A)
góc BAI= góc CAI (CMT)
AI là cạnh chung
suy ra tam giác ABI= tam giác ACI( c.g.c)
suy ra góc AIB= góc AIC (2 góc tương ứng) mà AIB+AIC= 180 độ nên AIB=AIC=180/2=90 độ suy ra AI vuông góc vs Bc. suy ra AO là đường cao của tam giác ABC.

d. khi M,N lần lượt là trung điểm của AB và AC thì BM=MN=NC.

6 tháng 7 2017

a.xét tam giác BAN và tam giác CAM ta có:
AM=AN (GT)
AB=AC ( tam giác ABC cân tại A)
A là góc chung
suy ra tam giác BÀN= tam giác CẤM (c.g.c)

b. xét tam giác OBM và tam giác OCN ta có:
góc OBM=góc OCN (2 góc tương ứng)
BM=CN (AB=AC mà AM=AN)
Góc OMB= góc ONC (góc ANB= góc AMC mà AMC+OMB=ANB+ONC)
suy ra tam giác OMB= ta giác ONC (g.c.g)

c.xét tam giác AMO và tam giác ANO ta có:
AM=AN(GT)
góc AMO= góc ANO ( tam giác AMC= tam giác ANB)
OM=ON (tam giác MOB= tam giác NOC)
suy ra tam giác AMO=tam giác ANO (c.g.c)
suy ra góc BAO= góc CAO (2 góc tương ứng). suy ra Ao là p/g của góc A


gọi giao điểm của BC và AO là I.
Xét tam giác ABI và tam giác ACI ta có:
AB=AC (tam giác ABC cân tại A)
góc BAI= góc CAI (CMT)
AI là cạnh chung
suy ra tam giác ABI= tam giác ACI( c.g.c)
suy ra góc AIB= góc AIC (2 góc tương ứng) mà AIB+AIC= 180 độ nên AIB=AIC=180/2=90 độ suy ra AI vuông góc vs Bc. suy ra AO là đường cao của tam giác ABC.

d. khi M,N lần lượt là trung điểm của AB và AC thì BM=MN=NC.

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

9 tháng 1 2016

cung kho tick cai di mai hoi co

9 tháng 1 2016

hình như cái này sai đề bài thì phải

28 tháng 7 2017

A B C M N 100

a) +Xét tam giác ABC cân tại A có \(\widehat{A}\)= 100o

=>\(\widehat{B}=\widehat{C}=40^o\)

TT ta có: Tam giác AMN cân(AM=AN) tại A có\(\widehat{A}\)=100o

=>\(\widehat{AMN}=\widehat{ANM}=40^o\)

=>\(\widehat{B}=\widehat{C}\)\(=\widehat{AMN}=\widehat{ANM}\)

=>\(\widehat{B}=\widehat{AMN}\)

Mà hai góc này đồng vị =>MN//BC

+Xét tam giác AMC và tam giác ANB có:

AM=AN

 chung

AC=AB

Do đó tam giác AMC= tam giác ANB(c.g.c)

Suy ra BN=CM(hai cạnh t.ứ)

Bài 2 để tí mik lm tiếp, mik đag bận, bạn tích mik để mik có cái để tl tiếp nhé

Chúc học tốt