K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*) 
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**) 
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM. 
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4) 
vì OI là trung trực của MN nên OM = ON (5) 
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB. 
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.

18 tháng 6 2018

A B C M N O H K

Gọi H và K lần lượt là hình chiếu của O trên 2 cạnh AB và AC của \(\Delta\)ABC

Suy ra OH=OK (Vì AO là tia phân giác ^BAC)

Do O nằm trên trung trực của MN nên OM=ON (T/c đường trung trực)

Xét \(\Delta\)OHM và \(\Delta\)OKN: ^OHN=^OKN=900; OM=ON; OH=OK

=> \(\Delta\)OHM=\(\Delta\)OKN (Cạnh huyền cạnh góc vuông) => ^OMH=^ONK

Hay ^OMB=^ONC. Xét \(\Delta\)OBM và \(\Delta\)OCN:

BM=CN; ^OMB=^ONC; OM=ON => \(\Delta\)OBM=\(\Delta\)OCN (c.g.c)

=> ^OBM=^OCN => ^OBA=^OCN => Tứ giác ABOC nội tiếp đường tròn

=> ^BAC+^BOC=1800. Mà ^BAC=900 => ^BOC=900.

Mặt khác \(\Delta\)OBM=\(\Delta\)OCN (cmt) => OB=OC => \(\Delta\)BOC vuông cân tại O

Theo ĐL Pytagore thì \(BC=\sqrt{2}.OB\Leftrightarrow\frac{BC}{OB}=\sqrt{2}\Leftrightarrow\frac{BC^2}{OB^2}=2\) 

Để chứng minh hệ thức: \(\frac{1}{AB^2}+\frac{1}{OB^2}=\frac{4}{BC^2}\Leftrightarrow\frac{BC^2}{AB^2}+\frac{BC^2}{OB^2}=4\)(x2 vế với BC2)

Đã có: \(\frac{BC^2}{OB^2}=2\Rightarrow\frac{BC^2}{AB^2}+2=4\Leftrightarrow\frac{BC^2}{AB^2}=2\)

Ta đi chứng minh \(\frac{BC^2}{AB^2}=2\Leftrightarrow BC^2=2.AB^2\)

Mà \(BC^2=AB^2+AC^2\)(ĐL Pytagore) nên \(AB^2=AC^2\Leftrightarrow AB=AC\)

Tức là phải c/m tam giác ABC vuông cân ở A (mâu thuẫn với đề bài) ---> Đề thiếu.

4 tháng 3 2018

B A C D

Vì    \(\widehat{CDB}+\widehat{ACB}=90^o\)  mà  \(\widehat{CDB}+\widehat{ABD}=90^o\) ( vì tam giác ABD vuông tại A )

nên suy ra   \(\widehat{ACB}=\widehat{ABD}\)

Mặt khác : \(\widehat{ABC}+\widehat{ACB}=90^o\) =>>>   \(\widehat{ABC}+\widehat{ABD}=90^o\) hay \(\widehat{CBD}=90^o\) => \(\Delta BCD\)vuông tại B

- Xét \(\Delta BCD\)vuông tại B có BA là đường cao , theo hệ thức lượng trong tam giác vuông , ta có :

\(\frac{1}{BC^2}+\frac{1}{DB^2}=\frac{1}{AB^2}\)   ( đpcm )

4 tháng 3 2018

Cảm ơn bạn nhiều ạ

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2