Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E i H
A) Ta có tam giác ABC cân
=> AB = AC
Mà AD + DB = AB
AE + EC = AC
=> DB = EC ( AD = AE gt)
b) đề phải là BE và CD cắt nhau tại I
Ta có AD = AE
=> Tam giác ADE cân tại A
=> Góc ADE = Góc AED
=> Góc EDB = Góc DEC ( Cùng cộng nhau bằng 180 độ )
Xét Tam giác DEB và tám giác EDC có
BD = EC (cmt)
Góc EDB = Góc DEC (cmt)
DE là cạnh chung
=> Tam giác DEB và tam giác EDC (c-g-c)
=> Góc DBE = Góc ECD
=> Góc IBC = Góc ICB ( cùng cộng góc DBE và Góc ECD bằng hai góc ABC và Góc ACB)
=> Tam giác IBC cân
c) Ta có tam giác ADE cân \(\Leftrightarrow\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Và tam giác ABC cân \(\Leftrightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2)\(\Leftrightarrow\widehat{ADE}=\widehat{ABC}\)
Hai góc này ở vị trí đồng vị bằng nhau
=> DE // BC (đpcm)
d) Ta có điểm I cách đều cạnh AB và AC
=> AI là tia phân giác của tam giác ABC
trong tam giác cân tia phân giác cũng là đường cao
=> AI vuông góc với BC
E) chứng minh HI là tia phân giác của tam giác BHC
thì ba điểm thẳng hàng
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha