Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xem lại đề nha
AH là đường cao thì H∈BC
mà AM⊥BC(M∈BC)
⇒ H trùng M rồi
A C B M O N H I K
a) Chứng minh BM vuông với BN
Gọi chân đường cao kẻ từ A xuống CA, AB, CB lần lượt là H; I; K
Theo bài ra ta có: NM vuông góc AO
=> ^NAO =90^o => ^NAB + ^OAB =90^o (1)
=> ^HAN + ^CAO =90^o (2)
Và ta có: BO; CO là 2 đường phân giác góc B, C của tan giác ABC
=> AO là phân giác góc A của tam giác ABC
=> ^BAO = ^CAO (3)
Từ (1); (2); (3)
=> ^HAN = ^NAB hay AN là phân giác góc ngoài của tam giác ABC tại đỉnh A
Xét tam giác vuông HNA và tam giác vuông INA có: AN chung và ^HAN = ^NAB ( chứng minh trên)
=> Tam giác HNA = tam giác INA
=> NH=NI (4)
Xét tam giác vuông CHN và ta, giác vuông CKN có: CN chung và ^HCN = ^KCN ( vì N thuộc phân giác góc C của tam giác ABC)
=> Tam giác CHN = Tam giác CKN
=> NH=NK (5)
Từ (4) ; (5)
=> NI=NK
Xét tam giác vuông NKB và tam giác vuông NIB có: NI=NK ( chứng minh trên) và NB chung
=> Tam giác NKB =tam giác NIB
=> ^ KBN =^IBN = 1/2 ^ABK
Mặt khác ^ABM =^CBM =1/2 ^ABC ( M thuộc phân giác góc B)
=> ^NBM =^IBN +^ABM = 1/2 ^ABK +1/2 ^ABC =1/2 ( ^ABK + ^ABC )=1/2 . 180^o =90 ^o
=> BM vuông góc BN
b) Tương tự
*Gọi F là trung điểm DC.
Xét tam giác ABC cân tại A có:
AH là đường cao (gt)
=>AH cũng là đường trung tuyến
=>H là trung điểm BC.
Xét tam giác DBC có:
H là trung điểm BC (cmt)
F là trung điểm DC (gt)
=>HF là đường trung bình của tam giác DBC
=>HF//OD.
Xét tam giác AHF có:
O là trung điểm AH (gt)
HF//OD (cmt)
=>D là trung điểm AF
=>AD=DF
Mà DF=CF=\(\dfrac{1}{2}\)DC (F là trung điểm DC)
=>AD=DF=CF=\(\dfrac{1}{2}\)DC
Ta có: AM vuông góc với BO(gt)
CN vuông góc với BO(gt)
=>AM//CN
Xét tam giác ADM có:
AM//CN (cmt)
=>\(\dfrac{ÀD}{DC}=\dfrac{AM}{CN}=\dfrac{1}{2}\)(định lí Ta-let)
=>CN=2AM