K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là tia phân giác của góc BAC

b: Xét tứ giác ADEH có

B là trung điểm của AE
B là trung điểm của DH

Do đó: ADEH là hình bình hành

Suy ra: DE//AH

c: Ta có: góc BAH=góc AED

mà góc AED>góc DAB

nên góc BAH>góc DAB

hình bạn tự vẽ nhé

a,Trong tam giác cân đường cao ứng vs đỉnh A đồng thời là đường phân giác ứng vs đỉnh đó

=> AH là phân giác của  \(\widehat{BAH}\)

Xét \(\Delta ABH\)\(\Delta ACH\),có:

\(AB=AC\)(vì \(\Delta ABC\)cân tại A)

\(\widehat{BAH}=CAH\)(vì AH là phân giác của \(\widehat{BAH}\))

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)

b,.Xét \(\Delta BAH\)và \(\Delta BED\) có:

\(\widehat{ABH}=\widehat{EBD}\)

\(AB=BE\)

\(DB=BH\)

\(\Rightarrow\Delta BAH=\Delta BED\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{BED}\) ( 2 góc tương ứng)

mà 2 góc ở vị trí so le trong

\(\Rightarrow DE//AH\)

c. Xét \(\Delta AHD\) có:

\(\widehat{AHD}=90^o\)

=> DA > AH

mà AH=DE ( \(\Delta BAH=\Delta BED\))

=> DA > DE

Xét \(\Delta DAE\)có:

DA > DE

=> \(\widehat{DEA}>\widehat{DAE}\)

\(\widehat{DAE}=\widehat{BAH}\) ( chứng minh câu b )

=> \(\widehat{BAH}>\widehat{DAE}\)

hay \(\widehat{BAH}>\widehat{DAB}\)

câu d,e mik chw lm đc

k mik nhé!

#sadgirl#

21 tháng 5 2019

a, Xét \(\Delta BAH\)vuông tại H và \(\Delta CAH\)vuông tại H có:

                       BA = CA ( \(\Delta ABC\)cân ở A )

                       AH : cạnh chung

\(\Rightarrow\Delta BAH=\Delta CAH\)( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\hept{\begin{cases}HB=HC\\\widehat{BAH}=\widehat{CAH}\end{cases}}\)

                          => AH là phân giác góc BAC

b, Xét \(\Delta DBE\)và \(\Delta HBA\)có:

               DB = HB ( giả thiết )

                \(\widehat{DBE}=\widehat{HBA}\)( 2 góc đối đỉnh )

                BE = BA ( giả thiết )

=>\(\Delta DBE\)\(\Delta HBA\)( c-g-c )

=> \(\widehat{BDE}=\widehat{BHA}\)

 Mà 2 góc này so le trong

=> AH // DE

c, 

Xét \(\Delta\)AHD có \(\widehat{AHD}=90^o\)

=> DA > AH

mà AH=DE  ( \(\Delta DBE=\Delta HBA\))

=> DA > DE

Xét \(\Delta DAE\) có: DA > DE

=> \(\widehat{DEA}>\widehat{DAE}\) 

mà \(\widehat{DEA}=\widehat{BAH}\) ( chứng minh câu b )

=> \(\widehat{BAH}>\widehat{DAE}\)

hay \(\widehat{BAH}>\widehat{DAB}\)

d, Vì DB = BH mà BH = CH ( chứng minh câu a )

=> DB = BH = CH

=> DB = \(\frac{1}{2}BC\)hay DB = \(\frac{1}{3}CD\)     (1)

    Có:  D là trung điểm EF 

=> CD là đường trung tuyến trong \(\Delta EFC\)  (2)

 Từ (1) và (2)

=> B là trọng tâm trong tam giác EFC

  Mà  FG là  đường trung tuyến trong ​\(\Delta EFC\)( do G là trung điểm CE )

=> FG đi qua B

=> 3 điểm F,B,G thẳng hàng

      

a: ta có: ΔBCA cân tại A

mà AH là đường cao

nên HB=HC và AH là đường phân giác 

b: Xét tứ giác ADEH có

B là trung điểm của AE
B là trung điểm của DH

Do đó: ADEH là hình bình hành

Suy ra: DE//AH

c: Xét ΔDAE có DE<DA

nên góc DAE<góc DEA

mà góc DEA=góc BAH

nên góc DAE<góc BAH

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1