K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

Tự kẻ hình nha

a) - Vì tam giác ABC cân tại A (gt)
=> AB = AC (định nghĩa)
     góc ABC = góc ACB (dấu hiệu)
- Vì AH vuông góc với BC (gt)
=> tam giác ABH vuông tại H (tc)
     tam giác ACH vuông tại H (tc)
- Xét tam giác vuông ABH và tam giác vuông ACH, có: 
    + AB = AC (cmt)
    + Chung AC 
=> tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)

b) - Vì tam giác vuông ABH = tam giác vuông ACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> AH là đường trung tuyến tam giác ABC (dấu hiệu)
- Vì N là trung điểm của AC (gt)
=> BN là đường trung tuyến tam giác ABC (dấu hiệu)
Mà G là giao điểm của BN và AH (gt)
=> G là trọng tâm của tam giác ABC (tc)
- Xét tam giác ANG và tam giác CNK, có: 
    + NG = NK (gt)
    + AN = CN (N là trung điểm của AC)
    + góc ANG = góc CNG (đối đỉnh)
=> tam giác ANG và tam giác CNK (cgc)
=> góc AGN = góc CKN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong 
=> AG // CK (dấu hiệu)

c) - Vì G là trọng tâm của tam giác ABC (cmt)
=> BG = 2/3 BN (tc)
=> NG = 1/3 BN 
Mà NK = NG (gt)
=> NK = 1/3 BN 
=> NK + NG = 1/3 BN + 1/3 BN 
=> GK = 2/3 BN
Mà BG = 2/3 BN (cmt)
=> GK = BG 
=> G là trung điểm BK

2 tháng 3 2020

Xét tg ABC có; AH là trung tuyến cạnh BC; BN là trung tuyến của cạnh AC

Mà AH và BN cắt nhau tại G => G là trọng tâm

=> CG là trung tuyến cạnh AB hay CM là trung tuyến canh AB (do M là trung điểm cạnh AB)

=> \(AG=\frac{2}{3}AH;GH=\frac{1}{3}AH;CG=\frac{2}{3}CM;GM=\frac{1}{3}CM\)

Ta có: \(BC+AG=2HC+\frac{2}{3}AH=2\left(CH+\frac{1}{3}AH\right)\)

\(=2\left(CH+GH\right)>2CG\) (BĐT tam giác)

\(=2\cdot\frac{2}{3}CM=\frac{4}{3}CM=4GM\) (dpdcm)

28 tháng 2 2023

loading...

a) trong ΔABC, có góc AHB là góc vuông

góc ABH là góc nhọn

⇒ góc AHB > góc ABH

⇒ AB > AH

b) M là trung điểm của AB và N là trung điểm của AC, mà AB = AC (2 cạnh bên của tam giác cân) ⇒ MB = NC

xét tam giác MBC và tam giác NCB, ta có : 

MB = NC (cmt)

góc B = góc C (2 góc đáy của 1 tam giác cân)

BC là cạnh chung

⇒  tam giác MBC = tam giác NCB (c-g-c)

⇒ MC = NB (2 cạnh tương ứng)

c) xét tam giác NAG và tam giác NCK , ta có : 

NA = NC (vì N là trung điểm của cạnh AC)

góc NAG = góc NCK (đối đỉnh)

NG = NK (gt)

=> tam giác NAG = tam giác NCK (c-g-c)

=> AG = CK (2 cạnh tương ứng)

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

18 tháng 4 2021

a) Chứng minh ΔAIB = ΔCIK (c - g - c)

=> Góc BAC = Góc ACK

Chứng minh ΔAIK = ΔCIB (c - g - c)

=> Góc CAK = Góc ACB 

Xét tam giác ABC và tam giác ACK có:

Góc BAC = Góc ACK (cmt)

AC: chung

Góc CAK = Góc ACB (cmt)

=> Tam giác ABC = Tam giác CKA (c - g - c)

=> AC = CK (2 cạnh tương ứng)

b) Tam giác ABC có AH là đường trung tueyesn, BI là đường trung tueeys, AH và BI cắt nhau tại G

=> G là trọng tâm của tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}AG=\dfrac{2}{3}AH\\CG=\dfrac{2}{3}CM\end{matrix}\right.\)

Có; \(AG+GH=AH\)

\(\Rightarrow\dfrac{2}{3}AH+GH=AH\)

\(\Rightarrow GH=\dfrac{1}{3}AH\)

\(\dfrac{AG}{GH}=\dfrac{\dfrac{2}{3}AH}{\dfrac{1}{3}AH}=2\)

Chứng minh tương tự: \(\dfrac{CG}{MG}=2\)

\(\Rightarrow\dfrac{AG}{GH}=\dfrac{CG}{MG}\left(=2\right)\)

=> MH // AC 

13 tháng 3 2022

hichic các bn ơiiiiiiii