Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
a) Nối A với H, ta có tam giác AHB và tam giác AHC
- Xét tam giác AHB và AHC ta có:
AB=AC ( gt)
AH là cạnh chung
BH=CH ( vì H là trung điểm của BC)
=> Tam giác AHB= Tam giác ẠHC
=> Góc BAH=góc HAC ( hai góc tương ứng)
=> AH là tia phân giác của góc BAC (ĐFCM)
Có tam giác AHB= tam giác AHC
=> góc BHA=góc CHA
Mà B,H,C thẳng hàng => BHC= 180 độ
=> góc BHA=góc CHA=90 độ
=> AH vuông góc với BC (ĐFCM)
Mình biết làm ý a thôi, ý b chịu, mong bạn thông cảm
phần b cm ck song song với ab vẽ hình rồi nhìn vào đó mà cm
tự kẻ hình nha:3333
a) xét tam giác AHB và tam giác AHC có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác AHC(ch-gnh)
=> HB=HC( hai cạnh tương ứng)
b) xét tam giác AHB và tam giác EHC có
AH=EH(gt)
BH=CH(cmt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác EHC(cgc)
=> BAH=CEH( hai góc tương ứng)
mà BAH so le trong với CEH=> AB//CE
từ tam giác AHB= tam giác AHC=> BAH=CAH( hai góc tương ứng)
=> CEH=CAH=> tam giác AEC cân C
c) vì AB//HK=> BAH=AHK=> CAH=AHK(CAH=BAH)
=> tam giác AHK cân K=> AK=HK
vì AH vuông góc với BC=> CAH+ACH=90 độ=> ACH=90 độ-CAH
vì AHK+KHC=AHC=> KHC= 90 độ- AHK
=> ACH=KHC (AHK=CAH)
=> tam giác KHC cân K=> KC=HK
=> AK=KC=> K là trung điểm AC
a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :
AB : cạnh chung
\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)
AC = AI ( gt )
\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )
Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )
\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)
\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)
=> BA là đường phân giác của \(\widehat{HBK}\)
b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)
Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)
Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )
c) Gọi E là giao điểm của HK và BA
Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK
Ta có BA là đường trung trực của HK => HA = KA
Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM
=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
Hình bạn tự vẽ nhá
a) ta có ∆ ABC cân
có AH là phân giác nên cũng là trung tuyến , trung trực
=> AH là trung trực của BC
B) vì ∆ ABC cân có
AH là phân giác nên cũng là trung tuyến
=> HB=HC=6/2=3 cm
∆ AHB vuông tại H theo py-ta-go ta có
\(AH^2+HB^2=AB^2\)
\(=> AH^2 = AB^2-BH^2\)
AH^2=25–9= 16
=> AH = 4 cm
C) trong ∆ ABK có
BK vuông góc với AK và HA=HK
=> ∆ ABK cân tại B
=> Góc HBK = góc HBA
Mà ∆ABC cân (gt)
=> Góc HBK = GÓC HCA
Mà chúng ở vị trí sole trong
=> BK // AC
Vậy BK // AC(đpcm)
A C B K H 5 cm 6 cm