K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Xét \(\Delta AMB\) và \(\Delta AMC\).có:

AB = AC ( do tam giác ABC cân tại A )

MB = MC ( do M là trung điểm BC )

AM là cạnh chung

=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)

=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.a) Chứng minh: ED=ECb) Chứng minh: \(EK\perp DC\)Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần...
Đọc tiếp

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC

2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.

a) Chứng minh: ED=EC

b) Chứng minh: \(EK\perp DC\)

Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần làm phần b) giúp mình thôi nhé! Nếu có sai sót thì các bạn sửa giúp mình. Thanks! 

1) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(90^o+60^o+\widehat{ACB}=180^o\)

\(150^o+\widehat{ACB}=180^o\)

\(\widehat{ACB}=180^o-150^o\)

Vậy \(\widehat{ACB}=30^o\)

Mà CM là tia phân giác góc \(\widehat{ACB}\)nên:

\(\widehat{ACM}=\widehat{MCB}=\frac{\widehat{ACB}}{2}=\frac{30^o}{2}=15^o\)

Vậy \(\widehat{ACM}=\widehat{MCB}=15^o\)

Xét \(\Delta AMC\)có:

\(\widehat{BAC}+\widehat{AMC}+\widehat{ACM}=180^o\)

\(90^o+\widehat{AMC}+15^o=180^o\)

\(105^o+\widehat{AMC}=180^o\)

\(\widehat{AMC}=180^o-105^o\)

Vậy \(\widehat{AMC}=75^o\)

2) a) Xét \(\Delta ADE\)và \(\Delta CKE\) có:

AE=CE (E là tia phân giác cạnh AC)

\(\widehat{DEA}=\widehat{KEC}\) (đối đỉnh)

\(\widehat{C}\): Cạnh chung

Vậy \(\Delta ADE=\Delta CKE\) (g-c-g)

Suy ra: ED=EC (hai cạnh tương ứng)

b) Chứng minh: \(EK\perp DC\)

1
17 tháng 12 2018

Xét tg BDK,có:

BD=BC(gt)

DE=CE(theo phần a)

DK=CK(gt)

=>B,E,K thẳng hàng

và BK là đưòng trung trực của tg BDK

mà \(K\in DC\)

=>BK \(\perp\)DC hay \(KE\perp DC\)

hay EK 

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)

15 tháng 4 2020

Câu 1:

Xét tam giác AMB và tam giác AMC ta có:

        AB = AC (tam giác ABC cân tại A)

        ABM = ACM (tam giác ABC cân tại A)

=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)

15 tháng 4 2020

Câu 2:

a) Ta có: +) AK+KB = AB => KB = AB-AK

               +) AH+HC = AC => HC = AC-AH

Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)

=>KB=HC

Xét tam giác BHC và tam giác CKB ta có:

          HC=KB (cmt)

          HCB=KBC (tam giác ABC cân tại A)

          BC là cạnh chung

=>tam giác BHC = tam giác CKB (c.g.c)

=>BH=CK (2 cạnh tương ứng)     (dpcm)

Xét tam giác ABH và tam giác ACK ta có:

        AB=AC (tam giác ABC cân tại A)

        BH=CK (cmt)

        AH=AK (gt)

=> tam giác ABH = tam giác ACK (c.c.c)

=> ABH = ACK (2 góc tương ứng) (dpcm)

b) Theo a) tam giác BHC= tam giác CKB

=> HBC=KCB (2 góc tương ứng) hay OBC=OCB

=> Tam giác OBC là tam giác cân tại O (dpcm)

c) Theo b tam giác OBC cân tại O => OB=OC

    Theo a góc ABH = góc ACK => KBO= HCO

Xét tam giác OKB và tam giác OHC ta có:

      KB=HC (theo a)

      KBO=HCO (cmt)

      OB=OC (cmt)

=> tam giác OKB = tam giác OHC (c.g.c)

=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)

d) Gọi giao điểm của AO và KH là I

Xét tam giác AKO và tam giác AHO ta có:

        AK=AH (gt)

        AO là cạnh chung

        OK=OH (theo c)

=> tam giác AKO = tam giác AHO (c.c.c)

=> KAO = HAO (2 góc tương ứng)   hay KAI=HAI

Xét tam giác KAI và tam giác HAI ta có:

          AK=AH (gt)

          KAI=HAI (cmt)

          AI là cạnh chung

=> tam giác KAI = tam giác HAI ( c.g.c)

=> KI=HI ,   mà I nằm giữa H và K

=> I là trung điểm của KH hay

AO đi qua trung điểm của KH (dpcm)

23 tháng 12 2019

a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :

  • AB = AC ( \(\Delta\)ABC cân tại A )
  • AM : cạnh chung
  • BÂM = CÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )

b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :

  • AM : cạnh chung
  • Góc AHM = Góc AKM ( = 90° )
  • HÂM = KÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )

c ) Gọi O là giao điểm của AM và HK

Xét \(\Delta\)AOH và \(\Delta\)AOK có :

  • AO : cạnh chung
  • AH = AK ( cmt )
  • HÂO = KÂO ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )

\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )

Mà AÔH + AÔK = 180° ( kề bù )

\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90° 

Hay AM \(\perp\)HK 

20 tháng 2 2019

a) C/M ΔAMB=ΔAMC

Ta có ∠BAM=∠MAC (gt)

AB=AC (gt)

∠ABM=∠ACM (ΔABC cân)

Vậy ΔAMB=ΔAMC (g-c-g)

b) C/M M trung điểm BC

Vì ΔABC cân tại A (do AB=AC:gt)

Có AM là đường cao

Nên AM cũng là trung tuyến

Vậy M trung điểm BC

20 tháng 4 2017

Giải:

Thứ tự sắp xếp là: 5, 1, 2, 4, 3.