K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔBEC vuông tại E và ΔCFB vuông tại F có

BC chung

\(\widehat{EBC}=\widehat{FCB}\)

Do đó: ΔBEC=ΔCFB

b: Xét ΔAEF có AE=AF

nên ΔAEF cân tại A

c: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng

Bài này học rồi 

mở vở ra lật lại coi rồi làm

a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

CB chung

\(\widehat{FBC}=\widehat{ECB}\)(ΔABC cân tại A)

Do đó: ΔFBC=ΔECB

b:

Ta có;ΔFBC=ΔECB

=>EB=FC

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

AB=AC

BE=CF

Do đó: ΔABE=ΔACF

c: Ta có: ΔABE=ΔACF

=>AE=AF

Xét ΔABC có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

nên EF//CB

d: Sửa đề: K là trung điểm của BC, H là giao điểm của BE và CF

Ta có: ΔFBC=ΔECB

=>\(\widehat{FCB}=\widehat{EBC}\)

=>\(\widehat{HBC}=\widehat{HCB}\)

=>ΔHBC cân tại H

=>HB=HC

=>H nằm trên đường trung trực của BC(1)

ta có: KB=KC

=>K nằm trên đường trung trực của BC(2)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,K thẳng hàng

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs