K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc với BC

d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

Do đó: ΔAHM=ΔAKM

=>AH=AK

26 tháng 4 2019

a, xét 2 tam giác vuông ABM và HBM có:

               MB cạnh chung

             \(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)

=> \(\Delta\)ABM=\(\Delta\)HBM (CH-GN)

b, Vì \(\Delta\)ABM=\(\Delta\)HBM(câu a) suy ra MA=MH(2 cạnh tương ứng)

c,Ta có: \(\Delta\)AMK=\(\Delta\)HMC(cạnh góc vuông-góc nhọn kề)

=> AK=HC(2 cạnh tương ứng) mà AB=HB suy ra KB=CB

=> \(\Delta\)KBC cân tại B

A B C M H K

20 tháng 7 2017

mk nha bn

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

Mình làm phần d) thôi nhé!

Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:

Tam giác ABI = Tam giác ACI)

mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)

=>\(\widehat{AIB}=\widehat{AIC}=90\)

Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:

\(AB^2=AI^2+BI^2\)(1)

Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:

\(AI^2=AD^2+DI^2\)(2)

Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:

\(BI^2=DI^2+BD^2\)(3)

Thay (2),(3) vào (1) ta có được:

\(AB^2=AD^2+DI^2+DI^2+BD^2\)

(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)

13 tháng 2 2016

Bạn tự vẽ hình nha 

a) Cét 2 tam giác ABD VÀ ACD ta có : 

AB = AC ( vì tam giác ABC cân ) 

góc A1 = A2 ( vì AD là tia pg của góc BAC ) 

AD là cạnh chung 

= > tam giác ABD = ACD ( c.g.c ) 

b) Vì tg ABD = ACD ( cmt ) 

=> góc D1 = D2 ( 2 góc tương ứng ) 

mà D1 và D2 là 2 góc kề bù 

= > góc D1 + D2 = 180 độ 

mà D1 = D2 

=> D1= D2= 180 độ : 2 = 90 độ 

=>AD vuông góc với BC

c) Vì MD song song với AC 

=> D1 = góc C ( 2 góc đồng vị ) 

mà góc B=C 

=> B = D1 

=> Tg MBD cân tại M 

=> MB = MD 

Câu d bạn tự làm nha 

14 tháng 2 2016


Bạn tự vẽ hình nha 
a) Cét 2 tam giác ABD VÀ ACD ta có : 
AB = AC ( vì tam giác ABC cân ) 
góc A1 = A2 ( vì AD là tia pg của góc BAC ) 
AD là cạnh chung 
= > tam giác ABD = ACD ( c.g.c ) 
b) Vì tg ABD = ACD ( cmt ) 
=> góc D1 = D2 ( 2 góc tương ứng ) 
mà D1 và D2 là 2 góc kề bù 
= > góc D1 + D2 = 180 độ 
mà D1 = D2 
=> D1= D2= 180 độ : 2 = 90 độ 
=>AD vuông góc với BC
c) Vì MD song song với AC 
=> D1 = góc C ( 2 góc đồng vị ) 
mà góc B=C 
=> B = D1 
=> Tg MBD cân tại M 
=> MB = MD 
Câu d bạn tự làm nha