Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) d) Ta có: \(\Delta\)KHC cân tại H
=> HK = CK
=> AB = AC = 2Ck = 2HK
=> AB = 2 HK
Ta có:
Qua H kẻ đường thẳng // với HA cắt AB tại T
Xét \(\Delta\)KHA và \(\Delta\)ATK có:
AK chung
^HKA = ^TAK ( so le trong )
^HAK = ^TKA ( so le trong )
=> \(\Delta\)KHA = \(\Delta\)ATK
=> AT = HK và KT = HA
=> AB = 2HK = 2AT
Khi đó: AH + BK = KT + BK > BT = AB + AT
=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB
Vậy 2 ( AH + BK) > 3AB
2) M I D E A P Q B C H
a)
- Xét \(\Delta\)ADC và \(\Delta\)ABE có:
AD = AB ( \(\Delta\)ADB cân tại A )
AC = AE ( \(\Delta\)ACE cân tại E)
^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC ; ^BAE = ^BAC + ^CAE = ^BAC + 90o )
=> \(\Delta\)ADC = \(\Delta\)ABE (1)
=> CD = EB
- Gọi P; Q lần lượt là giao điểm của DC và BA và BE
(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)
Xét \(\Delta\)APD và \(\Delta\)PQB
có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB = 180 độ ( tổng 3 góc trong 1 tam giác )
mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh)
=> ^PQB = ^PAD = ^BAD = 90 độ ( \(\Delta\)ABD vuông )
=> DC vuông BE
b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE
Gọi giao điểm của DE và MA là I
Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA (3)
=> DM = AE = AC
Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ
mà ^DAE + ^BAC = 180 độ
=> ^MDA = ^BAC
Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM
=> \(\Delta\)ABC = \(\Delta\)DAM
=> ^DAM = ^ABC
=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ
=> M; I; A; H thẳng hàng
=> AH cắt DE tại I
(3) => ID = IE => I là trung điểm của DE
Do vậy AH đi qua trung điểm của DE
https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+K%E1%BA%BB+AH+vu%C3%B4ng+g%C3%B3c+BC+t%E1%BA%A1i+H++a)+CM+tam+gi%C3%A1c+ABH=tam+gi%C3%A1c+ACH++b)+V%E1%BA%BD+trung+tuy%E1%BA%BFn+BM.+G%E1%BB%8Di+G+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AH+v%C3%A0+BM.+Ch%E1%BB%A9ng+minh+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m+c%E1%BB%A7a+tam+gi%C3%A1c+ABC++c)+Cho+AB=30cm,+BH=18cm.+T%C3%ADnh+AH,AG++d)+T%E1%BB%AB+H+k%E1%BA%BB+HD+song+song+v%E1%BB%9Bi+AC(D+thu%E1%BB%91c+AB),+ch%E1%BB%A9ng+minh+ba+%C4%91i%E1%BB%83m+C,G,D+th%E1%BA%B3ng+h%C3%A0ng&id=248109
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
Miyuki Misaki câu d là
2.(AH+BK)>3AB