Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â)xét tam giác abd và acd có
ab=ac(abc là tam giác cân )
ad chung
góc a1=a2(ad là tia phân giác góc a)
=>tam giác abd=acd(trường hợp cạnh-góc -cạnh)
b)vì tam giác abc=acd(câu a)=>bd=cd=>ad là trung tuyến cạnh bc
mà cf là đuong trung tuyển cạnh ba=>ad và cf cùng đi qua một điểm
=> g là trọng tâm
câu c mình vẫn chưa nghĩ ra được .xin lỗi nha
c) H là trung điểm của CD \(\Rightarrow\)DH=HC
mà EH vuông góc vs DC \(\Rightarrow\) EH là đường cao
\(\Rightarrow\)EH là đường trung trực của CD \(\Rightarrow\)ED=EC \(\Rightarrow\)tam giác DEC cân tại E
d) tam giác GBC cân tại G ( CM tương tự như trên )
\(\Rightarrow\) góc GBC =GCB
mà \(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
\(\widehat{GBD}+\widehat{ABE}=\widehat{B}\) ; \(\widehat{GCB}+\widehat{ACF}=\widehat{C}\)
\(\Rightarrow\) GÓC ABE = ACF
TAM GIÁC ABE = TAM GIÁC ACF (G.C.G)
\(\Rightarrow\) AE=AF
MÀ AF=1/2AB ( CF là đường trung tuyến ) ; AB=AC (tam giác ABC cân tại A )
\(\Rightarrow\) AE = 1/2 AC \(\Rightarrow\) E LÀ TRUNG ĐIỂM CỦA AC
\(\Rightarrow\) BE LÀ ĐƯỜNG TRUNG TUYẾN
mà G là trọng tâm của tam giác ABC
\(\Rightarrow\)BE đi qua G \(\Rightarrow\)3 điểm B,E,G thẳng hàng
A B C D
a)Xét \(\Delta ABCvà\Delta ACD\),ta có:
AB=AC(gt)
BAD=CDA(gt)
AD:chung
=>\(\Delta ABC=\Delta ACD\)(c,g.c)
Theo bài ra ta có AD//EH vậy từ đây suy ra gócADE=gócDEH (1)
Vì tam giácDEC cân => gocs EDC= gocsC= góc B (2)
Ta có: B+BAD=90 độ
EDC+DEH=90 độ
Vậy từ đây suy ra BAD=DEH.
Mà BAD=DAE(gt) và ADE=DEH (1)
Vậy từ đây suy ra DAE=ADE vậy từ đây suy ra tam giác ADE cân tại A vậy suy ra AE=DỄ mà DỄ=ẸC vậy suy ra AE=EC vậy suy ra E là trung điểm của AC
Vậy suy ra 3 điểm B,G,E thẳng hàng.
Còn cái AD>BD thì mình giải sau nhé. Không còn thời gian rồi
a: XétΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
DO đó: ΔABD=ΔACD
b: XétΔABC có
AD là đường trung tuyến
CF là đường trung tuyến
AD cắt CF tại G
Do đó: G là trọng tâm của ΔABC