K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AHchung

Do đo: ΔAHB=ΔAHC

b: HB=HC=BC/2=3cm

=>AH=4cm

c: Xét ΔABM và ΔACN có

góc ABM=góc ACN

AB=AC
góc BAM chung

Do đó: ΔABM=ΔACN

Suy ra BM=CN

Xét ΔNBC và ΔMCB có

NB=MC

NC=MB

BC chung

Do đo: ΔNBC=ΔMCB

Suy ra: góc KBC=góc KCB

=>ΔKBC cân tại K

=>KB=KC

=>KN=KM

hay ΔKNM cân tại K

d: Xét ΔABC có AN/AB=AM/AC

nên NM//BC

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MBa)Chứng minh AD=CBb)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độBài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K...
Đọc tiếp

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MB

a)Chứng minh AD=CB

b)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độ

Bài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K thuộc CN) .Kẻ đường thẳng d đi qua C cắt Ix tại E và cắt KI tại F . Chứng minh ME//MF

Bài 3 :Cho tam giác ABC ( góc A < 90 độ ) . TẠi A kẻ Ã vuông góc với AC , M thuộc Ax sao cho AM=AC . M,B thuộc 2 nửa mặt phẳng đối nhau bờ AC . Tại A kẻ Ay vuông góc với AB , n thuộc Ay sao cho AN = AB ( N,C thuộc 2 nửa mặt phẳng đối nhau bờ AB )

a) chứng minh tam giác ABM = tam giác ANC

b) BM=CN

c) Bm vuông góc với CN

BÀI 4 Tam giác ABC , M là trung điểm của AB , N là trung điểm của AC . Trên tia đối của tia MN lấy điểm P sao cho NP = MN

a) tam giác AMN = tam giác CPN

b) CP = BM

c) MN//BC

d) nhận sét gì về MN so với BC

BÀi 5 cho tam giác ABC . từ C kẻ CX // với AB . Trên cạnh Ab lấy điểm M . Trên tia Cx lấy điểm N sao cho AM=CN. Nối MN cắt AC tại D

a) chứng minh OA=OC , OM =ON

b) Nối BO tia BO cắt Cx tại P . Chứng minh AB = CD

Các bạn giải được bài nào thì giải bài đấy cho mình nhé , mình cần gấp lắm rùi . Thank nha

1
9 tháng 12 2015

đừng có ns lung tung bọn mik muốn làm đó

5 tháng 3 2017

CM BNC=CMB

MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung

\(\Rightarrow\)BM=CN

CM ABM=ACN

AB=AC ; AM=AN ; \(\widehat{A}\) chung

\(\Rightarrow\)ABM  =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)

b     \(\widehat{ABM}=\widehat{ACN}\)  \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\)

    \(\Rightarrow\)   \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)

Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)

\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân

c,  Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)      
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A

d,      xét BAD và CAD

góc BAI = CAI ; AB=AC ; AD chung 

\(\Rightarrow\)góc ADB = ADC  mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90

8 tháng 5 2017

A B C M N D E

a. Do ABC là tam giác cân tại A nên AB = AC hay AN = NB = CM = MA.

Xét tam giác AMB và ANC có:

AM = AN; AB = AC; góc A chung nên \(\Delta AMB=\Delta ANC\left(c-g-c\right)\)

b. Từ câu a, \(\widehat{ABM}=\widehat{ACN}\) (Hai góc tương ứng)

Mà tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)

Suy ra \(\widehat{DBC}=\widehat{DCB}\) hay tam giác BDC cân tại D.

c. Ta thấy \(\Delta ABE\) và \(\Delta ACE\) có : \(\widehat{B}=\widehat{C}=90^o;\) AB = AB; AE chung

nên \(\Delta ABE\)\(\Delta ACE\left(ch-cgv\right)\Rightarrow EB=EC\)

Ta thấy AB = AC, DB = DC, EB = EC nên A, D, E cùng thuộc đường trung trực của BC. Vậy chúng thẳng hàng.