Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Bạn tự vẽ hình nha)
a) Xét tam giác ABH và tam giác ACK có:
+Góc K = Góc H = 900
+AB=AC ( tam giác ABC cân )
+Góc A chung
=> Tam giác ABH = tam giác ACK ( Cạnh huyền - góc nhọn )
a, xét tam giác ABH và tam giác ACK có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABH = tam giác ACK( CH-GN)
b,vì tam giác ABC cân tại A nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABH}\)=\(\widehat{ACK}\)suy ra \(\widehat{IBC}\)=\(\widehat{ICB}\)
=> tam giác IBC cân tại I
=>IB=IC
c, xét tam giác IAB và tam giác IAC có:
IA cạnh chung
AB=AC(gt)
IB=IC( theo câu b)
=> tam giác IAB= tam giác IAC (c.g.c)
=>\(\widehat{IAB}\)=\(\widehat{IAC}\)
kéo dài AI xuống cạnh BC, gọi đó là điểm M
Xét tam giác AMB và tam giác AMC có:
AM cạnh chung
\(\widehat{MAB}\)=\(\widehat{MAC}\)(cmt)
AB=AC(gt)
=> tam giác AMB= tam giác AMC( c.g.c)
=>\(\widehat{AMB}\)=\(\widehat{AMC}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AMB}\)=\(\widehat{AMC}\)=90 độ
=> AI vuông góc vs BC
a,xét 2 tam giác ABH và ACK
2 tam giác này bằng nhau theo trường hợp ch-gn
suy ra BH=CK
Hình bạn tự vẽ
a) CMR: AH = AK:
Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:
AB = AC ( vì tam giác ABC cân tại A )
góc A chung
Do đó: tam giác AHB = tam giác AKC ( ch-gn )
Suy ra: AH = AK ( 2 cạnh tương ứng)
b) CMR: góc KAI = góc HAI:
Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:
AH = AK ( chứng minh câu a )
cạnh AI chung
Do đó: tam giác KAI = tam giác HAI ( ch-cgv)
suy ra: góc KAI = góc HAI ( 2 góc tương ứng )
c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )
Xét tam giác BAM và tam giác CAM, có:
cạnh AM chung
AB = AC ( vì tam giác ABC cân tại A )
góc KAI = góc HAI ( chứng minh câu b )
do đó: tam giác BAM = tam giác CAM ( c-g-c)
suy ra: góc AMB = góc AMC ( 2 góc tương ứng )
ta có: góc AMB + góc AMC = 180 độ ( kề bù )
hay 2. góc AMB = 180 độ
=> 180 độ : 2 = 90 độ
do đó: AM vuông góc BC tại M ( đpcm )
Câu d mình làm sau do máy mình hết pin rồi!
Xét ∆BMI và ∆CMI, ta có:
+) BM = CM (vì IM là đường trung trực của BC)
+) \(\widehat{BMI}=\widehat{CMI}=90^0\)
+) MI cạnh chung
Suy ra: ∆BMI = ∆CMI (c.g.c)
⇒ IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông IHA và IKA, có:
+) \(\widehat{HAI}=\widehat{KAI}\) (AI là phân giác góc A)
+) AI cạnh huyền chung
Suy ra: ∆IHA = ∆IKA (cạnh huyền - góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC, có:
+) IB = IC (chứng minh trên)
+) IH = IK (chứng minh trên)
Suy ra: ∆IHB = ∆IKC (cạnh huyền - cạnh góc vuông)
Suy ra: BH = CK (2 cạnh tương ứng)