Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔABD và ΔACE có
\(\widehat{ABD}=\widehat{ACE}\)
AB=AC
\(\widehat{A}\) chung
Do đó:ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó:ΔABD=ΔACE
Suy ra: BD=CE
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :BD = CEtam giác BHC cânAH lsf dduwognf trung trực của BCTrên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :
- BD = CE
- tam giác BHC cân
- AH lsf dduwognf trung trực của BC
- Trên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
https://olm.vn/hoi-dap/detail/219225140352.html
bạn xem ở link này (mình gửi cho)
Học tốt!!!!!!!!!!!
Đề này lúc trước bọn tui làm chỉ có mỗi câu 3 thôi,câu 1,2 đưa vào để gợi ý làm câu 3 ó.
b
Chắc bác cũng chứng minh được
\(\Delta GAD=\Delta KCD\left(ch-gn\right)\Rightarrow KC=AG\)
\(\Delta ABG=\Delta CGH\left(ch-gn\right)\Rightarrow AG=CH\)
\(\Rightarrow KC=CH\)
\(\Rightarrow\Delta HEC=\Delta KEC\left(ch-cgv\right)\Rightarrow\widehat{HCE}=\widehat{KCE}\Rightarrow CE\) phân giác
c
Mặt khác do \(\Delta HEC=\Delta KEC\left(ch-cgv\right)\Rightarrow\widehat{KEC}=\widehat{HEC}\)
Ta có:
\(\widehat{KEC}=\widehat{EBC}+\widehat{ECB}\)
\(\widehat{HEC}=\widehat{EAC}+\widehat{ECA}=\widehat{EBA}+\widehat{ECA}\)
Khi đó \(\widehat{EBC}+\widehat{ECB}=\widehat{EBA}+\widehat{ECA}\left(1\right)\)
Do \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}+\widehat{DBC}=\widehat{ECA}+\widehat{ECB}\left(2\right)\)
Cộng vế theo vế của ( 1 );( 2 ) suy ra \(\widehat{EBC}+\widehat{ECB}+\widehat{ABD}+\widehat{DBC}=\widehat{EBA}+\widehat{ECA}+\widehat{ECA}+\widehat{ECB}\)
\(\Rightarrow2\widehat{EBC}=2\widehat{ECA}\Rightarrow\widehat{EBC}=\widehat{ECA}\)
\(\RightarrowĐPCM\)
Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuong góc với BC ( H thuộc BC ) Biết HI = 2cm HC= 3cm. Tính Chu vi tam giác ABC
a, tam giac BAD co AH vua la dung cao vua la dg trung truc nen do la tam giac can