Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C P E D Q F R
( Hình ko chính xác đâu nha )
CM
Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)
\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)
\(\Rightarrow DR\)là đường trung trực BC ( tc)
mà tam giác DBC cân tại D ( gt)
\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)
\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)
Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)
\(=30^0+30^0\)
\(=60^0\)mà BD = BR (cmt)
\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )
Vì \(\Delta APB\)đều ( gt)
\(\Rightarrow BP=BA\left(đn\right)\)
Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)
\(=60^0+\widehat{ABD}\left(1\right)\)
Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)
\(=60^0+\widehat{ABD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)
Xét \(\Delta BPD\)và \(\Delta BAR\)có:
\(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)
CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )
\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)
Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)
Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)
mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)
\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)
\(=360^0-\widehat{BDC}-\widehat{BRC}\)
\(=360^0-120^0-120^0\)
\(=120^0\)
(Chỗ này mình hướng dẫn bạn tự làm típ nhé)
từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200
\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)
\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)
Dễ thấy EQ=EC nên PF=CE.
A B C M N I H
có góc MAB = góc NAC = 90
góc MAB + gpcs BAC = góc MAC
góc NAC + góc BAC = góc BAN
=> góc MAC = góc BAN
xét tam giác MAC và tam giác BAN có :
MA = MB do tam giác MAB cân tại A (gt)
AN = AC do tam giác ANC cân tại A (gt)
=> tam giác MAC = tam giác BAN (c-g-c)
b, gọi MC cắt BA tại I và MC cắt BN tại E
xét tam giác MIA vuông tại A => góc AMI + góc MIA = 90
có góc AMI = góc IBE do tam giác MAC = tam giác BAN (Câu a)
góc MIA = góc BIE (đối đỉnh)
=> góc BIE + góc IBE = 90
=> tam giác BIE vuông tại E
=> MC _|_ BN
c,
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
A B C a 80 130 M N
ta có a//BC
mà góc MNC và góc BCA ở vị trí trong cùng phía nên:
góc MNC+ góc BCA=1800
1300+góc BCA=1800
góc BCA=1800-1300
góc BCA=500
theo định lí tổng 3 góc tong tam giác ta có:
góc BAC+ góc ABC + góc BCA=1800
800+góc ABC+500=1800
góc ABC=1800-800-500
góc ABC=500
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
Thôi động viên các bạn làm phần nào cũng 6 tích nhé. Làm bao nhiêu phần thì số tích nhân lên .
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
A B C O T
Vẽ tam giác đều BCT ( T nằm trên nửa mp bờ BC chứa điểm A)
=> ^TAC=10 độ
Xét t/g TAB và t/g TAC, ta có:
TA là cạnh chung
TB=TC(t/g TBC đều)
AB=AC(t/g ABC cân)
=> t/g TAB=t/g TAC(c.c.c)
=> ^TAB=^TAC( cặp góc t/ứng)
=> ^TAB=^TAC=30o
Xét t/g TAC và t/g BOC, ta có:
TC=BC(t/g TCB đều)
ATC^=OBC^=30o
ACT^=OCB^=10o
=> t/g TAC=t/g BOC(g.c.g)
=> AC=OC => t/g AOC cân tại C
p/s: bài t quan trọng là ý thôi, chứ trình bày cũng ko tốt lắm..tự trình bày lại ha :))
chỉ cần bạn nói là vẽ tam giác đều là tôi biết bạn làm được bài.