K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

A B C O T

Vẽ tam giác đều BCT ( T nằm trên nửa mp bờ BC chứa điểm A)

=> ^TAC=10 độ

Xét t/g TAB và t/g TAC, ta có:

TA là cạnh chung 

TB=TC(t/g TBC đều)

AB=AC(t/g ABC cân)

=> t/g TAB=t/g TAC(c.c.c)

=> ^TAB=^TAC( cặp góc t/ứng)

=> ^TAB=^TAC=30o

Xét t/g TAC và t/g BOC, ta có:

TC=BC(t/g TCB đều)

ATC^=OBC^=30o

ACT^=OCB^=10o

=> t/g TAC=t/g BOC(g.c.g)

=> AC=OC => t/g AOC cân tại C

p/s: bài t quan trọng là ý thôi, chứ trình bày cũng ko tốt lắm..tự trình bày lại ha :))

6 tháng 3 2019

chỉ cần bạn nói là vẽ tam giác đều là tôi biết bạn làm được bài.

12 tháng 4 2019

A B C P E D Q F R

            ( Hình ko chính xác đâu nha )

                                CM

Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)

\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)

\(\Rightarrow DR\)là đường trung trực BC ( tc)

          mà tam giác DBC cân tại D ( gt)

\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)

\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)

Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)

                      \(=30^0+30^0\)

                      \(=60^0\)mà BD = BR (cmt)

\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )

Vì \(\Delta APB\)đều ( gt)

\(\Rightarrow BP=BA\left(đn\right)\)

Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(1\right)\)

Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)

 Xét \(\Delta BPD\)và \(\Delta BAR\)có:

       \(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)

CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )

\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)

Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)

Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)

   mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)

\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)

                \(=360^0-\widehat{BDC}-\widehat{BRC}\)

                \(=360^0-120^0-120^0\)

               \(=120^0\)

       

(Chỗ này mình hướng dẫn bạn tự làm típ  nhé)

từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200

\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)

\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)

Dễ thấy EQ=EC nên PF=CE.

     

12 tháng 4 2019

mình hiểu rồi thanks bạn nhiều 

6 tháng 2 2020

A B C M N I H

có góc MAB = góc NAC = 90 

góc MAB + gpcs BAC  = góc MAC 

góc NAC + góc BAC = góc BAN 

=> góc MAC = góc BAN

xét tam giác MAC và tam giác BAN có : 

MA = MB do tam giác MAB cân tại A (gt)

AN = AC do tam giác ANC cân tại A (gt)

=> tam giác MAC = tam giác BAN (c-g-c)

b, gọi MC cắt BA tại I  và  MC cắt BN tại E

xét tam giác MIA vuông tại A => góc AMI + góc MIA = 90

có góc AMI = góc  IBE do tam giác MAC = tam giác BAN (Câu a)

góc MIA = góc BIE (đối đỉnh)

=> góc BIE + góc IBE = 90 

=> tam giác BIE vuông tại E 

=> MC _|_ BN

c, 

15 tháng 2 2016

Bai 1:

Ap dung dinh li Py-ta-go vao tam giac AHB ta co:

AH^2+BH^2=AB^2

=>12^2+BH^2=13^2

=>HB=13^2-12^2=25

Tuong tu voi tam giac AHC

=>AC=20

=>BC=25+16=41

16 tháng 7 2015

A B C a 80 130 M N

ta có a//BC

mà góc MNC và góc BCA ở vị trí trong cùng phía nên:

góc MNC+ góc BCA=1800

1300+góc BCA=1800

góc BCA=1800-1300

góc BCA=500

theo định lí tổng 3 góc tong tam giác ta có:

góc BAC+ góc ABC + góc BCA=1800

800+góc ABC+500=1800

góc ABC=1800-800-500

góc ABC=500

a: EC=12cm

b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có

BA=CA
góc BAD chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có

EB=DC

góc IBE=góc ICD

Do đó: ΔIBE=ΔICD

d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta co: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có MB=MC

nen M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

3 tháng 3 2019

Thôi động viên các bạn làm phần nào cũng  6 tích nhé. Làm bao nhiêu phần thì số tích nhân lên .

\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)

=> \(\widehat{B}=\widehat{C}\)=50o

=> \(\widehat{A}\)=80o

Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)

<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)

Xét \(\Delta ABK\)

\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)

=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)

=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)